Qseven® conga-QMX6/UMX6

NXP*1.MX6 ARM® Cortex A9 processor with Ultra Low Power Consumption

Software User’s Guide

Revision 1.0

O

congatec Copyright © 2013 congatec AG QMXbms10 1/81

Revision History

O

congatec

Revision | Date (yyyy.mm.dd) | Author | Changes
0.1 2013.08.12 AEM e Preliminary release
0.2 2014.02.28 AEM « Added Yocto and Android sections.
« Added section 5.2 "IOMUX Configuration".
« Restructured and updated the whole document.
1.0 2017.05.15 BEU « Official release

Copyright © 2013 congatec AG

QMX6éms10

2/81

Preface

This user's guide provides information on how to set up and install the congatec Linux BSP on the conga-QMX6/UMXé. It is one of seven
documents that should be referred to when designing an i.MX6é based Qseven® application for the conga-QMX6/UMXé. The other reference
documents that should be used include the following:

conga-QMX6/UMX6 Hardware User's Guide

Qseven® Design Guide

Qseven® Specification

i.MX6 Applications Processor Reference Manual (available at www.nxp.com)

congatec AN33 Installation and Update of NXP MFGTool and congatec Bootloader Profiles
congatec CTN-20120906-001

The links to these documents can be found on the congatec AG website at www.congatec.com. For the list of sources of information, see
section 9 "Sources of Information”.

Disclaimer

The information contained within this user’s guide, including but not limited to any product specification, is subject to change without notice.
congatec AG provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims
any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes
no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for
discrepancies between the product and the user’s guide. In no event shall congatec AG be liable for any incidental, consequential, special, or

exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user’s guide or any other information
contained herein or the use thereof.

Intended Audience

This user’s guide is intended for technically qualified personnel. It is not intended for general audiences.

Lead-Free Designs (RoHS)

All congatec AG designs are created from lead-free components and are completely RoHS compliant.

O

congatec Copyright © 2013 congatec AG QMXbms10 3/81

Electrostatic Sensitive Device
& All congatec AG products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle a congatec AG product
except at an electrostatic-free workstation. Additionally, do not ship or store congatec AG products near strong electrostatic, electromagnetic,

magnetic, or radioactive fields unless the device is contained within its original manufacturer’s packaging. Be aware that failure to comply with
these guidelines will void the congatec AG Limited Warranty.

Symbols

The following symbols are used in this user's guide:

Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

@ Note

Notes call attention to important information that should be observed.

Copyright Notice

Copyright © 2013, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted
without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is
supplied "as-is”.

O

congatec Copyright © 2013 congatec AG QMXbms10 4/81

Trademarks

Warranty

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property
of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.

congatec AG makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited
warranty (“Limited Warranty”) per the terms and conditions of the congatec entity, which the product is delivered from. These terms and
conditions can be downloaded from www.congatec.com. congatec AG may in its sole discretion modify its Limited Warranty at any time and
from time to time.

The products may include software. Use of the software is subject to the terms and conditions set out in the respective owner’s license
agreements, which are available at www.congatec.com and/or upon request.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congatec AG represents that the
products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or
due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congatec’s option and expense.

Customer will obtain a Return Material Authorization (“RMA”) number from congatec AG prior to returning the non conforming product freight
prepaid. congatec AG will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged
or replaced product is shipped by congatec, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to
congatec’s direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec makes no performance representations, warranties, or guarantees, either
express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of
fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec AG shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec shall not otherwise be
liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive
remedy against congatec, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the
product only.

Certification

O

congatec

congatec AG is certified to DIN EN ISO 9001:2008 standard.

Copyright © 2013 congatec AG QMXbms10 5/81

Technical Support

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products
can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities
and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical
support department by email at support@congatec.com

Terminology

Term Description

PCl Express (PCle) Peripheral Component Interface Express — next-generation high speed Serialized 1/O bus

PCl Express Lane One PCl Express Lane is a set of 4 signals that contains two differential lines for transmitting and two differential lines for Receiving.
Clocking information is embedded into the data stream.

LTIB Linux Target Image Builder

PCl Express Mini Card PCI Express Mini Card add-in card is a small size unique form factor optimized for mobile computing platforms.

eMMC Embedded Multi Media Card is a non-volatile memory system, which frees the processor from low level flash memory management.

SDIO card SDIO (Secure Digital Input Output) is a non-volatile memory card format developed for use in portable devices.

usB Universal Serial Bus

SATA Serial AT Attachment: serial-interface standard for hard disks

HDA High Definition Audio

HDMI High Definition Multimedia Interface. HDMI supports standard, enhanced, or high-definition video, plus multi-channel digital audio
on a single cable.

BSP Board Support Package

OTP One Time Programmable

USB OTG USB On-The-Go. A USB specification that allows USB devices to act as host.

SPI Bus Serial Peripheral Interface is a synchronous serial data link standard named by Motorola that operates in full duplex mode.

IOMUX Input Output Multiplexer

GbE Gigabit Ethernet

LvDS Low-Voltage Differential Signaling

O

congatec Copyright © 2013 congatec AG QMXbms10 6/81

Contents

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.5.3
2.5.3.1
2.5.3.2
254
2.6

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3

4.1
4.2
4.3
4.4
4.41
4.4.2
4.4.3
4.5

O

congatec

INErOAUCTION ..t 9 5 BOOt ProCessooiiiiiiiiiiiiiccc e 32
: 5.1 BOOT fUSES ...ttt 32
Setting Up the HOSt SyStem........cvrssisssisssssns LY IOMUX CONFIGUIAION wevvvrreee oo 33
(R)very|ew .. 11 6 Y 34
EQUINEMENTS ..ottt M1

Setting Up the Standalone Cross-Development Environment 11 6.1 U-boot 2009.08 ..ot 34
Serial Port Terminal (Serial Console)cccccciiiiiiii 12 6.1.1 Environment Variables ... 34
Setting up the Hardware.............cccoooiiiiiiiii 12 6.1.2 Version Specific Hints.........ccocoiiiiiiiiiiiiiccccc 36
Setting Up the Software..........ccccooiiiiiiiiiiiiiic 13 6.1.3 Special Functionalityccooiiiiiiiiiii 36
Updating the Bootloader (NXP MFGTool / cgtMFGui)............ 14 6.1.4 Bootloader SCriptscoiiiiiiiiiiiiiiciicc e 36
USE CaS@S. ittt 15 6.1.5 Runtime Configuration..........cccooiiiiiiiiiiiiiicc e 37
Download, Installation and Update Procedure..............c......... 15 6.1.6 Restoring the Default Environment.........ccccooiiiiiiiiiiiiis 37
Configuring the NXP MFGTOO!.....cccviiiiiiiiiiiecccce e, 15 6.1.7 Selecting the Boot Devicecocvviiiiiiiiiiiieccce e, 37
GUI Based Configuration (cgtMFGUI)oovevviiiiiiiieicieee, 15 6.1.7.1 NEtWOrK BOOT....uiiiiiiiiieiiit e 37
Manual Configuration (cfg.ini)........cccovieiiiiiiiiiiiee 16 6.1.7.2 EMMUOC L. 38
USBGE . 17 6.1.7.3 SATA DEVICE ..ottt 39
BSP-Setupcooiiiiiiiiiicc 19 6.1.8 Boot Loader Types.......cccccioiiiiiiiiiiiiicic e 39
. 6.1.9 BUIIA ProCESS. .. .iiiiiiieiiiie et 39
Yocto Based LNux BSP v Y. UDOOt 2013.04 oo 40
Setting Up the BSP ..o 20 6.2.1 Environment Variablesooooo oo 40
Building a Root Filesystem Image ..., 21 6.2.2 Version Specific HiNts........ccooiiiiiiiiiiiiii e 42
Deploying the Image ..o, 21 623 Special FUNCHONAIItY ..o 42
Network BoOt.......oooiiiiiiiii 21 6.2.4 Runtime Configuration ___ 42
Micro-SD Cardcoooiiiiiiiii 24 6.2.5 Se|ecting the BOOt DaVICE ..o, 43
EMMOC s 25 6251 Network BOOT....c.iuiuiiiiiciiiiiniieeeicic s 43
ANIOId .. 26 6.2.5.2 Micro-SD Card ... 44
6.2.5.3 EMMOC L 44
Setting Up the Development System ..., 26 6.2.5.4 SD Card...oo oo 44
Preparation: Required Sources and Files ... 26 6255 SATADEVICE ovvvvvooemreeecssseeeoeeees oo 45
Building the Image ..o 28 4256 USB DEVICE ..oooveeeeeoeeeeeeeeeeeeeeeee oo 45
Dgploylng the IMage ..oovoiviiiiciis 29 626 Configuring the Video Devices.........ccooeveriiiiiiieiiiiceen 45
MiICro-SD Card ..o 29 627 Boot Loader TYPes.......coucuiiiiiiiiiiiicieiiiicciciee e 47
SD Card. i 30 6.2.8 BUIlA PrOCESS. ..ottt 47
eMIVIQ .. 30 6.3 U-DOOt 20716 .07 oo 48
Updating Procedure: SOUrCesoooouiiiiiiiiiiiiniiniiins 31 6.3.1 Environment Variables ..o 48
6.3.2 Version Specific Hints.........ccocoiiiiiiiiiiiicccce 50

Copyright © 2013 congatec AG QMXbms10 7/81

6.3.3
6.3.4
6.3.5
6.3.5.1
6.3.5.2
6.3.5.3
6.3.5.4
6.3.5.5
6.3.5.6
6.3.6
6.3.7
6.3.8

7

7.1
7.2
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.4
7.41
7.4.1.1
7.41.2
7.4.2

8

8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.1.1
8.3.1.2
8.3.2
8.3.2.1

O

congatec

Special Functionality ... 50

Runtime Configuration..........ccccevieriiiiiiieniiie e 50
Selecting the Boot Deviceccceviiiiiiiiiiniiiiiicicccee 51
NEtWOrk BOOT....c.uiiiiiiiiiiiiieiic e 51
MICrO-SD Cardcocuieiiiiiieiii ittt 52
EMMOC L 52
SD Card. ..ot 52
SATA DEVICE i 53
USB DEVICE .. 53
Configuring the Video Devices.......cc.coeviiiieniiieiiciicce, 53
Boot Loader Typesc.coiiiiiiiiiiiiiiciieii e 55
BUIld ProCess.c.uviiiiiiiiiiiieiic e 55
Falcon Mode (U-DOOL) c....eiiiee e 57
OVEIVIEW ..ot 57
Requirements ..o 57
Setting Up the Bootloader............cccccoooiiiiiiii, 57
Downloading SOUICEScoiiiiiiiiiiiiieiicce e 57
Configurationoc.eciiiiiiiii e 58
Build Falcon Mode Enabled Bootloaderc.ccccveviiiniinnen. 61
Update Target Systemccccooiiiiiiiiiiiiiiiicicccccee 61
Setting Up Boot Device ... 61
Use-Case |: Boot Kernel Image Directly (Quickboot)............... 61
Setting Up Partition/Filesystemccccociiiiiiiiiin. 62
Setting Up Raw MMC Devicecccooiiiiiiiiiii 64
Use-Case II: Load Bootloader Image from MMC Device......... 65
High Assurance Boot (HAB)coooiiiiiiiiiiiiccce e 66
OVEIVIBW ..t 66
Requirements. ... 66
Download/Setup.........cccoiiiiiiiiiiiiiici e 66
Building u-boot with HAB Support Enabled............................ 67
Setting Up Public Key Infrastructure (PKI).........ccccooeiiiinnnn. 68
Secure Boot: Restricted Execution (Signed Bootloader) 69
Signing Bootloader Image (u-Boot 2016.01, non-SPL)............ 69
Preparation ... 70
SIGNING e 70
SOC-Configurationcc.ecouierieiiieieit e 74
FUse OVENVIEWoiiiiiiiiiiiiiiic e 75

Copyright © 2013 congatec AG

8.3.2.2 Burning SRK Hashes Into SRK OTP Registers.........cccccuverineene 76
8.3.2.3 Verifying the Signed u-boot Image File (hab_status)............... 77
8.3.2.4 Finalizing LOCK....coiiiiiiiii 77
8.3.3 MFGTool and Locked Modules (SEC_CONFIG burned).......... 78
9 Sources of Information..........c..ooiiiiiiiiiiii e, 80
9.1 Industry Specification..........cccooiiiiiiiiiiii 81
QMXbms10 8/81

1

Introduction

Qseven® Concept

The Qseven® concept is an off-the-shelf, multi vendor, Single-Board-Computer that integrates all the core components of a common PC and is
mounted onto an application specific carrier board. Qseven® modules have a standardized form factor of 70mm x 70mm and a specified pinout
based on the high speed MXM system connector. The pinout remains the same regardless of the vendor. The Qseven® module provides the
functional requirements for an embedded application. These functions include, but are not limited to graphics, sound, mass storage, network
interface and multiple USB ports.

A single ruggedized MXM connector provides the carrier board interface to carry all the 1/O signals to and from the Qseven® module. This
MXM connector is a high speed signal interface connector that is commonly used for high speed PCI Express graphics cards in notebooks.

Carrier board designers can utilize as little or as many of the I/O interfaces as deemed necessary. The carrier board can therefore provide all the
interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense
and optimized package, which results in a more reliable product while simplifying system integration.

The Qseven® evaluation carrier board provides carrier board designers with a reference design platform and the opportunity to test all the
Qseven® |/O interfaces available and then choose what are suitable for their application. Qseven® applications are scalable, which means once
a carrier board has been created there is the ability to diversify the product range through the use of different performance class Qseven®
modules. Simply unplug one module and replace it with another; no need to redesign the carrier board.

This document describes the features available at congatec module based on NXP’s i.MXé ARM Cortex A9 processor.

Board Support Package

O

congatec

congatec AG provides developers with various BSPs as startup framework for building applications that run on conga-QMXé/conga UMXé. The
BSPs offered are Linux, android and Windows Embedded Compact. The Linux and android BSPs are provided directly by congatec while the
Windows Embedded Compact is provided via Witekio. The Windows Embedded Compact BSPs and documentation can be obtained from
Witekio at https://witekio.com/cpu/conga-gmxé.

Copyright © 2013 congatec AG QMXbms10 9/81

Software Distribution

O

congatec

There are two channels for distributing the software and documentation for the congatec i.MX6 based products:

The product specific download page

The product specific download pages for i.MX6 based products are:

« conga-QMXé: http://www.congatec.com/de/produkte/gseven/conga-gmxé.html
+ conga-UMXé: http://www.congatec.com/de/produkte/gseven/conga-umxé.html

The product specific download pages provide:

« binary tools

« readme files

« operating system specific sample images
« product manuals and datasheets

The congatec git-server

The congatec git-server provides:
« source code distribution of bootloader, kernel and BSPs (board support packages)

The public repositories on the congatec git-server can be reached via https://git.congatec.com/public

In order to fetch from the public git server repositories, use the "git clone" command on your development workstation.

For example, to fetch the "gmxé_uboot" repository (the bootloader repository for conga-QMXé and conga-UMX6), enter:

~$ git clone https://git.congatec.com:arm/gmx6 uboot.git

Copyright © 2013 congatec AG QMX6éms10

10/81

Setting Up the Host System

2.1

2.2

2.3

O

congatec

Overview

Software development is usually not performed at the target system. Most development tasks are handled at a dedicated development system,
called host. Depending on the task, either a Windows or Linux based host will be required. In most cases, the first task is to set up both host systems.

Requirements

Requirements for the set up of the standalone cross-development environment:

» x86 host system (64-bit)

« recommended free disk space: 25 GB
« recommended memory size: 8 GB

« Ubuntu 14.04 (64-bit)

« Yocto toolchain (http://downloads.yoctoproject.org/releases/yocto/yocto-2.1/toolchain/x86_64/poky-glibc-x86_64-core-image-sato-
armv7a-neon-toolchain-2.1.sh)

Setting Up the Standalone Cross-Development Environment

A suitable cross-development toolchain is required to develop software for an ARM target system at a x86 host (development) system. In order
to develop Linux software on the basis of the provided Yocto based Linux BSP, use the pre-built toolchain installer provided by the Yocto Project.

1. Perform a standard Ubuntu 14.04 (64-bit) installation.

2. Install additional packages:

ssh

git

gitk

1zop
libncursesw5-dev

3. Install the toolchain:

$ chmod a+x poky-glibc-x86 64-core-image-sato-armv7a-neon-toolchain-2.1.sh
$./poky-glibc-x86 64-core-image-sato-armv7a-neon-toolchain-2.1.sh

Copyright © 2013 congatec AG QMXbms10 11/81

2.4

2.4.1

4. Create the "sourceme” file (simplifies the setup of the environment):

cat > sourceme << EOF

export ARCH=arm

export SUBARCH=arm

export CROSS COMPILE=arm-poky-linux-gnueabi-
./opt/poky/2.1/environment-setup-armv7a-neon-poky-linux-gnueabi
EOF

V V.V V V &

Serial Port Terminal (Serial Console)

The initial start up code (bootloader) limits the hardware initialization to a minimum. Video interfaces and other interfaces like the keyboard are
not fully initialized. The operating system initializes the hardware later on. Therefore, the bootloader program and the operating system kernel
redirect their output to a specified serial port and a serial connection is required to read it. The serial connection is also required to determine
or influence the bootloader's behavior via command prompit.

Setting up the Hardware

UART2 is the specified serial port for conga-QMX6/UMX6. On the conga-QMXé, this port is available via the X6 on-module connector and
edge connectors (multiplexed). On the conga-UMX§, this port is only available via the Qseven edge connector (multiplexed with JTAG signals).

@@= Note

O

congatec

The UART signal level at the Qseven edge connector is 3.3V. The signal level of the X6 on-module connector (conga-QMXé) conforms to the
RS232 interface specification

Connect the serial port UART2 with the host system as shown in one of the following tables:

X6 On-Module Connector (conga-QMX6) | Host System (DTE), 9 Pol. DSUB
Pin 3 (GND) Pin 5 (GND)
Pin 4 (UART2, TX) Pin 2 (RxD)
Pin 5 (UART2, RX) Pin 3 (TxD)
Qseven Edge Connector Host System (DTE), 9 Pol. DSUB
GND Pin 5 (GND)
Pin 209 (UART2, TX) Pin 2 (RxD)
Pin 208 (UARTZ2, RX) Pin 3 (TxD)
Copyright © 2013 congatec AG QMXbms10 12/81

2.4.2 Setting Up the Software

A serial terminal application is required to connect to the target system's serial console. congatec recommends Tera Term (Windows) or
minicom (Linux) with the following serial port configuration: 115200 8N1; flow control: none.

1. Set up the serial port as shown in the screenshot below:

[coMs
Baud rate; 115200
Data: | hit
Parity: | none

Stop: 1 bit

Elow control: | none

Transmit delay
0 muecfchar msec/line

@@= Note

Ensure to select the right port.

2. Turn on the module.

3. Tera Term will show the bootloader messages in its main window as shown in the screenshot below:

O

congatec Copyright © 2013 congatec AG QMXbms10 13/81

00 e 3 N et ~ Eopm Toprm T

Bie o jebyp Cgromd Bew Heip

L-Boatl 2013 086 QMM praBGTE] -0 3- a2 eadch (Sep 26 2015 0l 36)

rewl.]l al 192 MH=
, calibration dala: BxbHLE=F&Y

. 0. total & WiB
e defaul i enuironnend

bod: delmill o HannsLae-55H
Lar-HGH [1024 hbE)

[1BFZ1] o |
& HEk 1% Elhermel Fhe at address &

s using MRC address from mel device

Moreal Book

2.5 Updating the Bootloader (NXP MFGTool / cgtMFGui)

The NXP manufacturing tool (MFGTool) enables communication with a conga-QMX6/UMX6, even without a working bootloader in the SPI-flash.
For this purpose, connect the host and target system via USB and set the i.MXé powered congatec design into Serial Downloader Mode (SDM).

The communication is done by special protocols, called Serial Download Protocol (SDP) and Update Transfer Protocol (UTP). In SDM, the CPU
module acts as a USB client and fetches the bootloader from a host computer via USB.

The manufacturing software environment consists of two main components:

e MFGTool
e MFG Profiles

@ Note

congatec recommends a serial terminal application, as described in section 2.4 "Serial Port Terminal (Serial Console)", to observe the update

progress.

O

congatec Copyright © 2013 congatec AG QMX6éms10 14/81

2.5.1

2.5.2

2.5.3

2.5.3.1

Use Cases

« Burning bootloader program to SPI-flash
« Updating SPI-resident bootloader program

« Module recovery:

— Recovery from corrupt bootloader

— Recovery from wrong bootloader image burned

Download, Installation and Update Procedure (NXP MFGTool and cgtMFGui)

Releases used to be distributed via the congatec website. MFGTool and profiles were split up into several archive files. Now, latest MFGTool
releases are distributed via the congatec git server (https://git.congatec.com/imxé6-mfg-tool/mfgtool). The MFG Profiles are linked to the
MFGTool repository by means of git submodules.

In order to obtain the MFGTool, follow the steps described in AN33 Installation and Update of NXP MFGTool and congatec Bootloader

Profiles, available on the congatec website www.congatec.com.

Configuring the NXP MFGTool

In order to burn or update a module's bootloader with the MFGTool, configurations are required in advance. You can edit the configuration file
with a suitable text editor or use a GUI application, called cgtMFGui.

GUI Based Configuration (cgtMFGui)

cgtMFGuiis a GPLv3 licensed, open source application. It makes using the NXP's MFGTool2 easier by eliminating the need of manual editing of
configuration files for common use cases. cgtMFGui's main concept is configuring and executing NXP's MFGTool2 via appropriate command-
line parameters - the cgtMFGui selections are mapped to suitable MFGTool2 command-line arguments.

If one follows the instructions given in section 2.5.2 "Download, Installation and Update Procedure (NXP MFGTool and cgtMFGui)", cgtMFGui
is automatically downloaded. There is a cgtMFGui subfolder within the MFGTool distribution containing the cgtMFGui executable.

D> Note

O

congatec

congatec's cgtMFGui is a GPLv3 licensed, open source application. The sources are available at the congatec public git server https://git.
congatec.com/imx6-mfg-tool/cgtMFGui

Copyright © 2013 congatec AG QMXbms10 15/81

2.5.3.2

O

congatec

The following screenshot shows cgtMFGui's main window:

-

O cgtMFGui

File Mode Help

Enable Guided Override Enable Manual Override Settings Quit

Basic Selections

1) Module/Board Type: | conga-QMXe - |
2) Part Number (PN): | 016100 - |
3) Action: | Burn u-Boot2016 to SPEflash - |

Memory Configuration (Guided Override)

Memory Size: | select... v |
Memory Width: | select... v |
Memary Clock: | select... v |

==
congatec

Run Configuration (Manual Override)

Module/Board Type: |qu6 |
Part Number (PN): | 016100 |
Action: |uboot2016-SPL_SPT |
Memory Size: | 1024 |
Memaory Width: |32 |
Memory Clock: |4DD |

Run MFGTool2 |

Make three selections:

Module board type

Part number of the module/board to be updated (the part number is printed at the module's/board's barcode label)

« Action to perform, e.g. burning bootloader program to target system

Proceed as described in section 2.5.4 "Usage".

Manual Configuration (cfg.ini)

Specify the following information to set up the MFGTool:

Module type: at the moment, there are two distinct module types (gmxé and umxé)

Software selection/action to perform: one has to select the bootloader/firmware image to burn to the target module

Part Number (PN) of the product:

— Each product type is identified by a unique number, called PN.

— MFGTool uses the PN to identify the type of the module in use. This information is optional in some cases.

Copyright © 2013 congatec AG

QMX6éms10

16/81

2.5.4

O

congatec

« Memory configuration:

— The specification of a suitable memory configuration is mandatory for the entire update process.
— Unless a proper memory configuration is set up, the update process will not work as expected or will even fail.

The cfg.ini consists of the following sections:
« [profiles]
— Specifying the module type
« [platform]
— Not used yet
« [LIST]
— Specifying software/action to perform (e.g. updating u-boot 2016).
o [variable]
— Specifying the PN.
— Specifying memory configuration.

All configuration options are predefined but commented out. Excluded configuration options start with a single semicolon ";". Uncomment a
configuration option to include it. The following example sets the module type to conga-UMXé:

;chip = qmx6
chip = umx6

More details about configuration options are embedded in the cfg.ini configuration file.

Usage
The steps below describe how to update a module with the help of the NXP MFGTool:
1. Configurate the NXP MFGTool as described in section 2.5.3 "Configuring the NXP MFGTool"

2. Establish a USB host/client connection between the Windows based host system and the USB OTG port of the carrier board / i.MX6
powered design. If the conga-QEVAL/Qseven 2.0 evaluation carrier board is used, a USB 2.0 A to USB micro-B cable is required. Connect
the USB A connector to the host system and the USB micro-B connector to the carrier board (connector X53).

Copyright © 2013 congatec AG QMXbms10 17/81

3. Set the USB OTG port of the module to client mode. The procedure depends on the carrier board in use. In case of the conga-QEVAL /
Qseven 2.0 evaluation carrier board, please ensure the following jumper settings:

— SW9: 1, 2 OFF; 3,4 ON (sets X53 to client mode)

X37:1-2 (sets USB_ID to floating)

SW1: 1.4 OFF

- SW2: 1.4 OFF

SW3: 1 0ON; 2.4 OFF

If other jumpers/switches settings were changed, it may be required to go back to the default settings as described in conga Tech Note
CTN-20120906-001 Rev 1.12 or later.

4. Set the signal BOOT_ALT#_BPLANE to low. This forces the module to Serial Downloader Mode (alternative boot mode). The procedure
depends on the carrier board in use. In case of the conga-QEVAL / Qseven 2.0 evaluation carrier board, the alternative boot mode is
controlled by switch M13:

— standard boot mode: M13 -> 1 OFF, 2 OFF

— alternative boot mode: M13-> 1 ON, 2 OFF
5. Run the serial terminal application, e.g. Tera Term, as described in section 2.4 "Serial Port Terminal (Serial Console)".
6. Run the MFGTool. If cgtMFGui is used, just click the "Run MFGTool2" button.

7. Power on the i.MXé based module. If all steps and settings mentioned above are correct, the MFGTool reports a HID compliant device as
shown below:

™ MigTool MultiPanel (Library: 211) o |nl= /]
Hub 3—Port 3 ~ Status Information
Drive(s): Successful Operations: 0
Failed Cperations: 0
HID+onformes Gerat e e

congatec Copyright © 2013 congatec AG QMXbms10 18/81

8. Press 'Start' in order to launch the bootloader update process. The manufacturing bootloader, kernel and ramdisk are transferred to the
target system. If everything works correctly, the progress of the update process can be observed via the serial console. After some time,

the success of the update procedure is reported as shown below:

Status Information

Successful Operations: i
Failed Cperations: 0
Failure Rate: 0,00 %%

Stop

2.6 BSP-Setup

i.MX6 based congatec designs support the following operating systems:

e Linux (Yocto)
« Android
« Windows Embedded Compact

Each BSP requires an initial setup - please refer to instructions given by the appropriate section.

QMXbms10 19/81

congatec Copyright © 2013 congatec AG

Yocto Based Linux BSP

3.1

O

congatec

A x86 based Linux system with installed cross compile toolchain is required to develop Yocto based software for i.MXé-based designs. It is
possible to use a virtual machine that runs Linux but a dedicated system with Ubuntu is preferrable. Furthermore, the host should have a serial
port to access the debug console and an SD card reader.

This guide shows the procedure for Yocto Project 2.1 (Krogoth) as an example. Use the latest Yocto release whenever possible. The available
Yocto releases are available on the following website: https://git.congatec.com/yocto/cgt-bsp-manifest/branches

For instructions on how to build an image for older versions, refer to the readme files provided on the relevant project page of the congatec
website www.congatec.com.

Setting Up the BSP

Follow the steps below to set up the development platform:
1. Install a fresh Ubuntu 14.04 64-bit operating system on your development host.

2. Update the host system'’s package repository list

$ sudo apt-get update

3. Install Yocto dependencies — a clean Ubuntu 14.04 system requires the installation of the following dependencies:
$ sudo apt-get install gawk wget git-core diffstat unzip texinfo build-essential chrpath libsdl1l.2-dev xterm curl

4. Obtain the repo utility:
$ mkdir ~/bin
$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo

5. Complete your local git client configuration. For example:

$ git config --global user.email "your@email"
$ git config --global user.name "your name"

6. Create a working directory and obtain the congatec Yocto-based BSP from the congatec public git server:
$ mkdir ~/yocto
$ cd ~/yocto
$ ~/bin/repo init -u https://git.congatec.com/yocto/cgt-bsp-manifest.git -b krogoth
$ ~/bin/repo sync

Copyright © 2013 congatec AG QMXbms10 20/81

3.2 Building a Root Filesystem Image

Follow the steps below to build the Yocto root filesystem (rootfs) for conga-QMXé:
1. Configure the build environment. This example is for conga-QMXé:

$ cd ~/yocto
$ MACHINE='cgtimx6' source setup-environment build

Accepting the EULA is required before proceeding to the next step
2. Build the root filesystem image. The Yocto-Project provides various example recipes to create a root filesystem image. For example:

a. fsl-image-machine-test: A console-only image that includes gstreamer packages, Freescale's multimedia packages (VPU and GPU)
when available, test and benchmark applications.

b. fsl-image-multimedia-full: A console-only image that includes gstreamer packages and Freescale's multimedia packages (VPU and
GPU) when available for the specific machine extended with additional gstreamer plugins.

c. core-image-sato: An image with Sato, a mobile environment and visual style for mobile devices. The image supports X11 with a Sato
theme, Pimlico applications, and contains terminal, editor, and file manager.

To build the fsl-image-machine-test image, use the following bitbake command:

$ bitbake fsl-image-machine-test

This build may take hours. When the build is finished, the image will be located in ~/yocto/build/tmp/deploy/images/cgtimxé6/

3.3 Deploying the Image

This section explains how to transfer the kernel and the root filesystem (rootfs) to the target system. You can load the root filesystem via network
or locally from an SD card, eMMC, SATA or USB - depending on the used module and bootloader version.

3.3.1 Network Boot

Follow the steps below to configure the TFTP and NFS services on the host system to boot from the network and set up the target system for network boot:

1. Configure TFTP service on the host system. You need this service to transfer the kernel image, the device tree blob and the initial ramdisk

(if used).

O

congatec Copyright © 2013 congatec AG QMXbms10 21/81

a. Install the tftpd-server and its dependencies:

$ sudo apt-get install xinetd tftpd tftp -y

b. Create a configuration file for the TFTP service:
$ sudo nano /etc/xinetd.d/tftp

c. Add the content below to the configuration file and save it:
service tftp

{
protocol = udp
port = 69
socket type = dgram
wait = yes
user = nobody
server = /usr/sbin/in.tftpd
server_args = var/lib/tftpboot -s
disable = no

}

d. Create the directory (/var/lib/tftpboot) and change its ownership. This directory is the root of the tftpd server:

$ sudo mkdir /var/lib/tftpboot
$ sudo chown -R nobody:nogroup /var/lib/tftpboot
$ sudo chmod -R 777 /var/lib/tftpboot

e. Restart xinetd in order to start the tftp service:

$ sudo service xinetd stop
$ sudo service xinetd start

To boot from network, the kernel (uimage), the devicetree blob files (imxé6g-gmxé.dtb and imxédl-gmxé.dtb) and if used, the initial
ramdisk, must be copied to the /var/lib/tftpboot directory.

@ Note

This directory is also used for exporting the root filesystem via NFS as described in the next section.
2. Configure NFS service on the host system. You need this service to access the root filesystem at the target system via network:

a. Install the required packages and dependencies on the development host:
$ sudo apt-get install nfs-kernel-server portmap

b. Create the directory (/var/lib/tftpboot/rootfs). This directory is the location of the exported root filesystem:
$ sudo mkdir /var/lib/tftpboot/rootfs

O

congatec Copyright © 2013 congatec AG QMXbms10 22/81

$ sudo chown -R nobody:nogroup /var/lib/tftpboot/rootfs
$ sudo chmod -R 777 /var/lib/tftpboot/rootfs

c. Open the file /etc/exports, add the lines below to the file and save it:

/var/lib/tftpboot/rootfs *(rw,sync,no root squash,no subtree check)
Use the absolute path of the rootfs

d. Trigger an update of the exported NFS directories:
sudo exportfs -a

e. If the root filesystem image is available as a compressed ".bz2" file, extract it to the exported folder with the following command:
$ sudo tar —xjf ~/yocto/build cgtgmx6/tmp/deploy/images/cgtgmx6/fsl-image-machine-test-cgtgmx6.tar.bz2 —C /var/lib/tftpboot/rootfs

f. Finally, copy the kernel and the devicetree blob files:

$ sudo cp ~/yocto/build cgtgmx6/tmp/deploy/images/cgtgqmx6/ulmage /var/lib/tftpboot
$ sudo cp ~/yocto/build cgtqmx6/tmp/deploy/images/cgtqmx6/ulmage-imx6q-gmx6.dtb /var/lib/tftpboot
$ sudo cp ~/yocto/build cgtqmx6/tmp/deploy/images/cgtqmx6/ulmage-imx6dl-gqmx6.dtb /var/lib/tftpboot

After that, the host system is prepared to provide the kernel and the root filesystem via network to the target system.
3. Configure the target system.

Adapt the following bootloader environment variables of the target system to your needs:

Variable Description

ipaddr The IP address of the target system
netmask The netmask of the network

serverip The IP address of the host system
bootfile The name of the kernel image
fdt_file The name of the device tree blob file
nfsroot The path of the root filesystem

@ Note

Bootloader 2013 and later versions can boot kernels with device tree support. The environment variable “boot_fdt” controls whether the
device tree blob file, specified by variable fdt_file (i.e imxé6g-gmxé.dtb), is loaded or not.
An example of how to set up network boot at the u-boot console is shown below (u-boot version 2013.04 and kernel version 3.10.x):

setenv dyn ip 'no'
setenv ipaddr '10.11.7.2'

O

congatec Copyright © 2013 congatec AG QMXbms10 23/81

setenv netmask '255.255.0.0'

setenv serverip '10.11.7.3'

setenv bootfile 'uImage'

setenv nfsroot '/var/lib/tftpboot/rootfs'

setenv netargs 'setenv bootargs console=${console}, ${baudrate} video=mxcfb0:dev=${vid devO} root=/dev/nfs ip=${ipaddr}:${serverip}:${gatewa
y}:${netmask} nfsroot=${nfsroot},v3,tcp'

saveenv

To boot a kernel that does not support device tree (for example kernel version 3.0.35), run the commands below at the u-boot command prompt:

setenv boot_fdt 'no'
saveenv

3.3.2 Micro-SD Card

1. Transfer the root filesystem with the following commands:
Replace sdX / sdX1 with the appropriate device / partition with caution!
$ cd ~/yocto/build/tmp/deploy/images/cgtimx6/
$ sudo dd if=/dev/zero of=/dev/sdX count=1000 bs=512
$ sudo sfdisk --force -uM /dev/sdX <<EOF

10,,83

EOF

$ sudo mkfs.ext3 -j /dev/sdX1

$ sudo mkdir -p /mnt/imgprep

$ sudo mount /dev/sdX1l /mnt/imgprep

$ sudo tar -xjvf fsl-image-machine-test-cgtgmx6 - XXXXXXXXXXXXXX.tar.bz2 -C /mnt/imgprep
$ sudo sync

$ sudo umount /dev/sdX1

Caution

Adapt sdX to whatever your device is recognized as. Otherwise, loss of data may occur.

2. Power on the target system and immediately press any key to enter the bootloader console prompt. To boot from a micro-SD card,
modify the u-boot mmcdev environment with the commands below:

U-Boot> setenv mmcdev 0

U-Boot> setenv mmcroot '/dev/mmcblkOpl rootwait rw'
U-Boot> saveenv

U-Boot> reset

O

congatec Copyright © 2013 congatec AG QMXbms10 24/81

3.3.3 eMMC

This requires a micro-SD card pre-installed with conga-QMX6 root filesystem. The micro-SD card acts as temporary bootmedia for the target
system when the eMMC does not contain a valid root filesystem.

1. Follow section 3.3.2 "Micro-SD Card" to prepare the micro-SD card.

2. Transfer the tar.bz2 file to the micro-SD card
$ cd ~/yocto/build/tmp/deploy/images/cgtimx6/
$ sudo mkdir -p /mnt/imgprep
sudo mount /dev/sdX1l /mnt/imgprep
sudo cp fsl-image-machine-test-cgtgmx6-XXXXXXXXXXXXXX.tar.bz2 /mnt/imgprep
sync
sudo umount /dev/sdX1l

©H A A

Caution

Adapt sdX to whatever your device is recognized as. Otherwise, loss of data may occur.

3. Boot up the system. After system boot up, clear the master boot record on the eMMC of the target device, create and mount ext3
filesystem as shown below:

sudo dd if=/dev/zero of=/dev/mmcblkl count=1000 bs=512

echo -e "o\nn\np\nl\n\n\nw\n" | fdisk /dev/mmcblkl

sudo mkfs.ext3 -j /dev/mmcblklpl

sudo mount /dev/mmcblklpl /mnt/imgprep

sudo tar -xjvf /fsl-image-machine-test-cgtgmx6-XXXXXXXXXXXXXX.tar.bz2 -C /mnt/imgprep
sudo sync

B2 2 S R e i G

4. Shut down the system and turn off the power supply. Afterwards, remove the micro-SD card.

5. Power on the system and immediately press any key to enter the bootloader console prompt. To boot from eMMC, modify the u-boot
environment as follows:
U-Boot> setenv mmcdev 1
U-Boot> setenv mmcroot '/dev/mmcblklpl rootwait rw'
U-Boot> saveenv
U-Boot> reset

@ Note

conga-UMXé does not provide a micro-SD card slot. The procedure is also applicable to SD cards but the device paths have to be changed
O appropriately.

congatec Copyright © 2013 congatec AG QMXbms10 25/81

Android

4.1

4.2

O

congatec

A x86 based Linux system with installed cross-compile toolchain / SDK Android development is required for i.MX6-based congatec designs. It
is possible to use a virtual machine but a dedicated system is preferrable. Furthermore, the host should have a serial port to access the serial
console and an SD card reader.

The i.MXé-based congatec designs require a 64-bit Ubuntu 14.04 system as the host for Android development. This chapter uses Android
Lollipop 5.1.1 as an example but it is also applicable to Android Marshmallow 6.0.1 and possibly even later versions.

For instructions on how to build Android images for Lollipop 5.0.0 or older, see the readme files provided on the appropriate product page at
the congatec website www.congatec.com.

Setting Up the Development System

1. Install the JDK:

$ sudo apt-get update
$ sudo apt-get install openjdk-7-jdk

2. Install required packages:

$ sudo apt-get install bison g++-multilib git gperf libxml2-utils make python-networkx zliblg-dev:i386 zip uuid uuid-dev liblzo2-2 liblzo2-
dev 1lzop git-core curl u-boot-tools mtd-utils gcc-multilib

Preparation: Required Sources and Files

Follow the steps below to obtain the required sources and files:

1. Obtain android source code:

cd ~

mkdir myandroid

mkdir bin

cd myandroid

curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

chmod a+x ~/bin/repo

~/bin/repo init -u https://android.googlesource.com/platform/manifest -b android-5.1.1 rl
~/bin/repo sync

cd ~/myandroid/prebuilts/gcc/linux-x86/arm

This command loads the necessary repositories. Therefore, it can take several hours to load.

H A A A A A B e A

Copyright © 2013 congatec AG QMXbms10 26/81

O

congatec

$ git clone https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6
$ cd arm-eabi-4.6
$ git checkout android-4.4.3 rl

2. Patch android source code:

cd ~

tar -zxvf android L5.1.1 2.1.0-ga_core_source.tar.gz

cd android L5.1.1 2.1.0 consolidated-ga core source/code

tar -zxf L5.1.1 2.1.0 consolidated-ga.tar.gz

cd ~/myandroid

$ source ~/android L5.1.1 2.1.0 consolidated-ga core source/code/L5.1.1 2.1.0 consolidated-ga/and patch.sh

$ c patch ~/android L5.1.1 2.1.0 consolidated-ga core source/code/L5.1.1 2.1.0 consolidated-ga imx L5.1.1 2.1.0-ga

B2 2 A A s

3. Obtain u-boot source code:

$ cd ~/myandroid/bootable/bootloader

$ git clone https://git.congatec.com/arm/qmx6 uboot.git uboot-imx
$ cd uboot-imx

$ git checkout cgt imx v2016.01 1.0.0

4. Obtain kernel source code:
$ cd ~/myandroid
$ git clone https://git.congatec.com/android/gqmx6 kernel.git kernel imx
$ cd kernel_imx
$ git checkout cgt-1p5.1.1-3.14.52

5. Obtain device BSP files:

$ cd ~/myandroid/device/fsl

$ git remote add cgt-1p5.1.1-2.1.0 https://git.congatec.com/android/device.git
$ git fetch cgt-1p5.1.1-2.1.0

$ git checkout --track cgt-1p5.1.1-2.1.0/cgt-1p5.1.1 2.1.0

6. Obtain hardware BSP files:

$ cd ~/myandroid/hardware/imx

$ git remote add cgt-1p5.1.1-2.1.0 https://git.congatec.com/android/hardware.git
$ git fetch cgt-1p5.1.1-2.1.0

$ git checkout --track cgt-1p5.1.1-2.1.0/cgt-1p5.1.1-2.1.0

7. Obtain android build files:

$ cd ~/myandroid/build

$ git remote add cgt-1p5.1.1-2.1.0 https://git.congatec.com/android/build.git
$ git fetch cgt-1p5.1.1-2.1.0

$ git checkout --track cgt-1p5.1.1-2.1.0/cgt-1p5.1.1-2.1.0

Copyright © 2013 congatec AG QMX6éms10

27/81

4.3

O

congatec

8. Obtain android system files:

$
$
$
$

cd ~/myandroid/system/core

git remote add cgt-1p5.1.1-2.1.0 https://git.congatec.com/android/system.git
git fetch cgt-1p5.1.1-2.1.0

git checkout --track cgt-1p5.1.1-2.1.0/cgt-1p5.1.1-2.1.0

Building the Image

Follow the steps below to build the image:

1. Prepare the environment:

H H A A A

export ARCH=arm

export CROSS_COMPILE=~/myandroid/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/bin/arm-eabi-

cd ~/myandroid

source build/envsetup.sh

lunch cgt imx6-eng

If the target system is conga-UMX6 PN 016203 or 016204 execute also the following command:
export OPTION512M=yes

2. Build the system:

cd ~/myandroid/kernel imx
make gmx6 android defconfig
make
cd ..

Two different files are provided for each module variant in the folder “~/myandroid/out/target/products/cgt_imxé/":

« conga-QMX6: SPL-cgtimx6-2016.01-r0-cgtqmx6-2016.01-r0 and u-boot-cgtgmx6-2016.01-r0.img
» conga-UMX6: SPL-cgtimx6-2016.01-r0-cgtumxé-2016.01-r0 and u-boot-cgtumxé-2016.01-r0.img

Substitute the bootloader on the target module with the bootloader from the manufacturing tool (MFGTool) package.

Copyright © 2013 congatec AG QMX6éms10

28/81

4.4 Deploying the Image

4.41 Micro-SD Card

After compilation, three images are generated under the folder " ~/myandroid/out/target/product/cgt_imx6":

» boot.img
e system_raw.img
e recovery.img

1. Transfer these images to the micro-SD card:

sudo chmod +x ~/myandroid/device/fsl/common/tools/fsl-sdcard-partition.sh
sudo ~/myandroid/device/fs1l/common/tools/fsl-sdcard-partition.sh /dev/sdX
cd ~/myandroid/out/target/product/cgt imx6

sudo dd if=boot.img of=/dev/sdX1l; sync

sudo if=system raw.img of=/dev/sdX5; sync

sudo dd if=recovery.img of=/dev/sdX2; sync

B2 =2 A S A e i G

Caution

Adapt sdX to whatever your device is recognized as. Otherwise, loss of data may occur.
2. Insert the micro-SD card into the module.
3. Power up the module and press any key to stop the autoboot.

4. At the u-boot command prompt, type the commands below:

$ setenv bootcmd “run bootcmd android”
$ saveenv
$ boot

@ Note

There is no micro-SD card slot at conga-UMX6 modules. Please refer to section 4.6.2 "SD Card".

O

congatec Copyright © 2013 congatec AG QMXbms10 29/81

4.4.2 SD Card

1. Transfer the android image files to the SD card as described in section 3.3.2 "Micro-SD Card".
2. Insert the SD card.

3. Power up the module and press any key to stop the autoboot.

4. At the u-boot command prompt, type the commands below:
$ setenv mmcdev 2
$ setenv bootcmd “run bootcmd android”
$ saveenv
$ reset

4.4.3 eMMC
You require an SD or micro-SD card with a Yocto image:

1. Download the Yocto sample image from the congatec website and transfer it to the SD card.
$ sudo mount /dev/sdX1l /mnt
$ sudo tar -zxvf cgt-imx6_yocto2.0 3.14.52 core-image-minimal_rl110.tar.bz2 -C /mnt

2. Copy the Android images to the previously created Yocto SD card (card shall be mounted on /mnt).

sudo mkdir /mnt/android

sudo cp ~/myandroid/out/target/product/cgt imx6/boot.img /mnt/android

sudo cp ~/myandroid/out/target/product/cgt imx6/system raw.img /mnt/android
sudo cp ~/myandroid/out/target/product/cgt imx6/recovery.img /mnt/android
sudo cp ~/myandroid/device/fsl/cgt imx6/eMMCtransfer.sh /mnt/android

sync

sudo umount /mnt

RS 2 A A S~ S -2 2

3. Insert the SD card.

4. Power up the module and press any key to stop the autoboot. At the command prompt, type the commands below:

$ env default —a
$ boot

5. Login as root user (username "root")

6. Make the emMCtransfer.sh script executable:

$ cd /android
$ chmod +x eMMCtransfer.sh

O

congatec Copyright © 2013 congatec AG QMXbms10 30/81

4.5

O

congatec

$./eMMCtransfer.sh /dev/mmcblkl
$ sync
$ reboot

7. Press any key to stop the autoboot at u-boot console prompt (subsequent to reboot).

8. Adapt the bootcmd environment variable:
$ setenv mmcdev 1
$ setenv bootcmd “run bootcmd android”
$ saveenv
$ reset

Updating Procedure: Sources

1. Update the source and config files:

cd ~/myandroid/kernel imx
git pull

cd ~/myandroid/devices/fsl
git pull

cd ~/myandroid/hardware/imx
git pull

cd ~/myandroid/build

git pull

R 2 A S R 2 -2 A 2 S O

2. Prepare the environment:

export ARCH=arm

export CROSS_COMPILE=~/myandroid/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/bin/arm-eabi-
cd ~/myandroid

source build/envsetup.sh

lunch cgt imx6-eng

B2 2 A T A e s

3. Rebuild the system:

$ cd ~/myandroid/kernel imx
make gmx6 android defconfig
make
cd ..
make

H A

4. Transfer all the images to the micro-SD card as described above.

Copyright © 2013 congatec AG QMX6éms10

31/81

Boot Process

5.1

The Power on Reset (PoR) signal starts the boot process by executing the code in the boot ROM. In normal operation mode, the boot ROM
uses the state of the BOOT_MODE register and the boot fuses to determine the boot device storing the bootloader code.

Boot fuses

The i.MXé processor provides an array of One Time Programmable (OTP) registers, called boot fuses. The boot fuses store configuration and
data permanently. They can be programmed to fetch the bootloader from different locations such as SPI-flash, eMMC, SATA or SD card. They
are used for boot, security and MAC address configuration. They can only be programmed once. If a boot fuse is burned, it can not be restored
to its original state.

On the conga-QMX6/UMX6, the boot fuses pre-configuration causes the boot ROM to fetch the bootloader from the onboard SPI-flash. The
boot fuses can also be configured to determine whether the boot ROM boots in standard mode or in a secure mode, called High Assurance
Boot (HAB). In secure boot mode, only certified boot images are accepted by the internal boot ROM. If you attempt to boot an uncertified
image, the boot flow jumps to the serial downloader mode. In this mode, you have to pass certified boot images to the system via serial USB
connection.

The hash keys are used in secure boot mode to authenticate a certified image. They are stored in an OTP boot fuse array. For more information
about how to use and implement secure boot mode, refer to section 8 "High Assurance Boot (HAB)".

@ Note

In some cases, it may be desirable to fetch the bootloader from an interface (e.g. SD card) instead of the SPI-flash. To achieve this, you
can either use a stub file in the SPI-flash or a customized conga-QMX6/UMX6 (with a customized setup of the boot fuses). For additional
information about board customization, contact the congatec technical support.

The boot fuses on the conga-QMX6é are not write-protected. Therefore, the customer may choose application specific functions. If the boot
fuses were write-protected, some functional decisions, e.g. enable or disable JTAG debugging, would be made in advance. This would
reduce the functions available to the customer.

ACaution

O

congatec

Altering settings of the boot fuses can make the module inoperable. Therefore, congatec recommends to write-protect the boot fuses against
alteration in the customer’ final production. If the boot fuses are altered, the customer is solely responsible for any damage that occurs.
Damage on the module due to improper handling, altering or configuring of the boot fuses, is not the responsibility of congatec.

Copyright © 2013 congatec AG QMXbms10 32/81

5.2

|IOMUX Configuration

For Linux kernel version 3.0.35, the conga-QMX6 IOMUX routing configuration can be found in the following kernel files:
/arch/arm/mach-mx6/board-mx6q_gmx6.c
/arch/arm/mach-mx6/board-mx6q_qmx6.h
/arch/arm/mach-mx6/board-mx6d1l_gmx6.h

For Linux kernel versions 3.10.xx, 3.14.xx and 4.1.xx the conga-QMX6/UMX6 IOMUX routing configuration can be found in the following kernel
device tree source files:

/arch/arm/boot/dts/imx6q-qmx6.dts

/arch/arm/boot/dts/imx6d1l-gmx6.dts

/arch/arm/boot/dts/imx6qdl-gmx6.dtsi

/arch/arm/boot/dts/imx6qdl.dtsi

@ Note

O

congatec

Please contact your congatec support to receive a full overview of all i.MX6 to Qseven signal connections.

Copyright © 2013 congatec AG QMXbms10 33/81

Bootloader (u-boot)

6.1

The u-boot bootloader is a GNU GPL licensed open source software. The u-boot input/output is redirected to one of the two onboard serial
ports. In order to get access to the u-boot output, or the u-boot command-line interface in general, establish a serial connection between the

host and target system.

The boot behavior is controlled via so called environment variables. They can be set with help of the u-boot command-line interface.

u-boot 2009.08

The source code for u-boot 2009.08 is provided on the congatec git server:

» https://qgit.congatec.com/arm/gmxé_uboot, branch

cgt_imx_3.0.35_1.1.0 conga-UMXé is supported since git rev:
 https://git.congatec.com/arm/gmxé_uboot/commit/206c65d49f3e7bab0dd291377148e58dfcd2cff

It is suitable to boot i.MX6 Linux kernels without device tree support.

@ Note

6.1.1

O

congatec

Bootloader version 2009.08 is not recommended for new designs. If you must use it, start the development on top of the latest bootloader
release.
Environment Variables

The behavior of the bootloader is controlled by environment variables. The bootloader binary serves a predefined default environment. The
following table shows the environment variables of the standard bootloader version u-boot 2009.08:

Variable Default Description
bootdelay 3 The boot delay in seconds
baudrate 115200 The baudrate for the serial terminal connection
ipaddr 192.168.1.103 The ip address used for network communication
netmask 255.255.255.0 The netmask used for network communication
serverip _SERVER_IP_ADDR_ The ip address of a remote server used for
netboot
Copyright © 2013 congatec AG QMXbms10 34/81

bootfile

_BOOT_FILE_PATH_IN_TFTP_ The name of the file that is requested from a
remote server during netboot (e.g. via the dhcp
or the tftp command)

nfsroot _ROOTFS_PATH_IN_NFS_ The path to the NFS root filesystem used for
netboot

loadaddr 0x10800000 The destination address in the memory the
bootfile/bootscript is stored to

bootdelay 3 The boot delay in seconds

baudrate 115200 The baudrate for the serial terminal connection

ipaddr 192.168.1.103 The ip address used for network communication

netmask 255.255.255.0 The netmask used for network communication

serverip _SERVER_IP_ADDR_ The ip address of a remote server used for
netboot

bootfile _BOOT_FILE_PATH_IN_TFTP_ The name of the file that is requested from a
remote server during netboot (e.g. via the dhcp
or the tftp command)

nfsroot _ROOTFS_PATH_IN_NFS_ The path to the NFS root filesystem used for
netboot

loadaddr 0x10800000 The destination address in the memory the

bootfile/bootscript is stored to

Furthermore, the following bootloader scripts are defined:

Script

Description

bootcmd

The default boot command that will be executed during system boot. By default, this script executes
the bootemd_mmc script.

bootcmd_mmc

Sets the bootargs and tries to fetch and execute the bootscript (6g_bootscript) from onboard uSD,
onboard eMMC or external SD card

bootcmd_net

Tries to get an ip address via dhcp and boots from network. Observe: In order to perform network
boot, additional settings, such as nfsroot, serverip, etc. have to be adjusted accordingly.

bootargs_base

Used by various other scripts to set the basic boot parameters (such as console setting and the
configuration of the video devices)

bootargs_mmc

Used by the bootemd_mmc script to initialize the boot parameters for mmc boot

bootargs_nfs

Used by the bootcmd_net script to initialize the boot parameters for network boot

clearenv

The clearenv script is used to reset the environment settings to their default state

upgradeu

Tries to fetch and execute the upgrade script (6g_upgrade) from onboard pSD, onboard eMMC or
external SD card

O

congatec Copyright © 2013 congatec AG

QMX6éms10

35/81

6.1.2

6.1.3

6.1.4

O

congatec

Version Specific Hints

« Booting from USB devices is not supported.

+ In contrast to newer bootloader versions (e.g, u-boot 2013), the bootloader binary is zero padded. Zero padding means, that the first 1024
(0x400) bytes of the binary are filled with zeros (0x00). Because of this, the binary file (.bin) is suitable to be copied to SPI-flash or SD card
without additional offset.

« Booting usually occurs by means of a bootscript (6g_bootscript) residing in the root of the boot partition.

Special Functionality

The mfgdump u-boot command is used to print the content of the congatec manufacturing area in human readable format.

Bootloader Scripts

Environment variables serve as storage for values and small scripts, which can be executed with the run command (e.g. variable bootcmd mmc,
clearenv and others).

Likewise, the u-boot scripts enable to load and execute scripts stored at storage media devices (e.g. SD card). For example, the 6q_bootscript
is loaded from an external storage device and determines the further boot sequence.

Such bootloader script files must be converted into a special binary format. This is done with the mkimage utility (part of the u-boot sources).
Example

Convert the 6g_bootscript script:

$ mkimage -A arm -0 linux -T script -C none -a 0 -e 0 -n “boot script” -d 6q bootscript.src 6q bootscript

Use the u-boot commands extload and source in order to load and execute the resulting binary bootscript file (6q_bootscript):
conga-QMX6 U-Boot > extload mmc 0:1 10008000 /6q bootscript && source 10008000

In the command above, the bootscript (6g_bootscript) is loaded from the first EXT partition of mmc device 0 to the system memory (memory
address 0x10008000) - this is done with the u-boot command extload. Afterwards, the bootscript is executed by means of the source command.

Copyright © 2013 congatec AG QMXbms10 36/81

6.1.5

6.1.6

6.1.7

6.1.7.1

O

congatec

Runtime Configuration

The user interacts with the u-boot bootloader by means of a command-line interface, called hush shell, via a serial connection. Such a serial
connection has to be established with help of a serial terminal application like Tera Term or minicom.

The hush shell provides a set of commands and simple scripting functionality. The help command gives a short overview of the available commands.

The boot sequence is controlled by a set of environment variables, simply called environment. The u-boot binary comes with a set of predefined
variables, modelling commonly used bootmodes, called standard environment.

There are several commands in order to administrate environment variables. The following table shows an important subset:

Command Description

setenv Modifies the value of an environment variable.
saveenv Saves the environment to SPI-flash.

help Prints a help text for each command.

print Prints a list of the current environment variables

Restoring the Default Environment

Execute the clearenv script to restore the default environment settings:

conga-QMX6 U-Boot > run clearenv

Switch off the power directly after running the clearenv script to ensure the environment will not be modified (and stored) by subsequent
actions (e.g. by executing scripts that contain setenv commands).

Selecting the Boot Device

Network Boot
If a DHCP server provides the network configuration parameters, enter run bootcmd net in the bootloader console prompt to perform network boot.

The following table shows an example of a minimal configuration to boot from network (dynamic network configuration via DHCP):

Copyright © 2013 congatec AG QMXbms10 37/81

Variable

Example Value

serverip 10.11.7.3
nfsroot /tftproot/rootfs
nootfile ulmage

bootcmd_mfg

sets the bootargs for manufacturing and tries to boot the manufacturing system

The following table shows the whole set of environment variables required for network boot in case of a static network:

Variable Example Value
ipaddr 10.11.7.2
serverip 10.11.7.3

ipaddr 10.11.7.2
netmask 255.255.0.0
nfsroot /tftproot/rootfs
bootfile ulmage

bootargs_nfs

'setenv bootargs ${bootargs} root=/dev/nfs ip=${ipaddr}:${serverip}: ${gateway}: ${netmask} nfsroot=${nfsroot},v3,tcp'

bootcmd_net

'run bootargs_base; run bootargs_nfs; tftp $loadaddr ulmage; bootm $loadaddr’

D> Note

Network boot requires additional server components and configuration, providing a kernel and a root filesystem to the target system via
TFTP/NFS — please refer to section 3.3.1 "Network Boot".

6.1.7.2

O

congatec

eMMC

1. Format the eMMC to FAT or EXT2.

2. Modify bootcmd_mmc to boot from the onboard eMMC:
conga-QMX6 U-Boot > print bootcmd mmc

bootcmd mmc=run bootargs base bootargs mmc;for disk in 0 1 2; do mmc dev ${disk};for fs in fat ext2 ; do ${fs}load mmc ${disk}:1

10008000

/6q _bootscript && source 10008000 ; done ; done

conga-QMX6 U-Boot > setenv bootcmd mmc 'run bootargs base bootargs mmc;for disk in 1 2 0; do mmc dev ${disk};for fs in fat ext2 ; do ${fs}
load mmc ${disk}:1 10008000 /6q bootscript && source 10008000 ; done ; done'

conga-QMX6 U-Boot > saveenv

In the example above, just the scan order of the different mmc devices is modified. The search order for the bootscript is: onboard eMMC,
external SD card, onboard micro-SD.

Copyright © 2013 congatec AG

QMXbms10 38/81

@ Note

The root device entry in the kernel parameters of the bootscript (6q_bootscript) has to be set to the onboard eMMC as well.

6.1.7.3 SATA Device

Modify bootcmd_sata to boot from SATA:

conga-QMX6 U-Boot > setenv bootcmd sata 'sata init; ext2load sata 0:1 10008000 /6q bootscript && source 10008000'
conga-QMX6 U-Boot > saveenv

@ Note

The root device entry in the kernel parameters of the bootscript (6q_bootscript) has to be set to the SATA device as well.

6.1.8 Boot Loader Types

There are three types of bootloaders:
+ Standard bootloader

This is the standard bootloader for booting into a Linux based system (without device tree support).
+ Bootloader for Android

This bootloader is required for booting into an Android based system. Compared to the standard bootloader, it has enhanced capabilities
and a different environment setup.

« Manufacturing bootloader

This is a special version of the bootloader to be used with the NXP manufacturing utility (MFGTool) to bring up or update the module.

@ Note

The bootloader is tailored to the part number of the congatec module. Use matching bootloader and part number for each module.

6.1.9 Build Process

The following steps describe the bootloader build process in a standalone environment using the standalone cross-development environment
(see section 2.3 "Setting Up the Standalone Cross-Development Environment") for conga-QMX6 (part number 016103):

O

congatec Copyright © 2013 congatec AG QMXbms10 39/81

1. Fetch the source code and switch to correct branch.

2. Set up the build environment:

~/qmx6_uboot$ source ~/sourceme

@ Note

Follow section 2.3 " Setting Up the Standalone Cross-Development Environment" to set up your build environment and the stated sourceme file.

3. Select the matching configuration and build the bootloader:

~/qmx6_uboot$ make cgt gmx6 config partnumber=016103
~/qmx6_uboot$ make

A bootloader binary (u-boot.pn016103.bin) is created in the build directory, respecting the part number naming scheme.

4. Flash the bootloader to the target system with the NXP MFGTool.

6.2 u-boot 2013.04

The source code for uBoot 2013.04 is provided on the congatec git server:

« https://git.congatec.com/arm/gmxé_uboot), branch cgt_imx_v2013.04_3.10.17_1.0.2

conga-UMXé6 is supported since git rev:
 https://git.congatec.com/arm/gmxé_uboot/commit/ef1818de1e0a29d75927336c1c007a2e67645d22

It is suitable to boot i.MX6 Linux kernels with and without device tree support.

@ Note

Bootloader version 2013.04 is not recommended for new designs. If you must use it, start the development on top of the latest bootloader release.

6.2.1 Environment Variables

The behavior of the bootloader is controlled by environment variables. The bootloader binary serves a predefined default environment. The
following table shows the environment variables of the standard bootloader version u-boot 2013.04:

O

congatec Copyright © 2013 congatec AG QMXbms10 40/81

Variable Default Description

baudrate 115200 The baudrate for the serial terminal connection

boot_fdt try Specifies if a kernel with separate devicetree blob file will be loaded. Possible values: yes, no, try

bootdelay 1 The boot delay in seconds

console ttymxc The device for console output

ethact FEC Name of active ethernet interface

ethaddr 00:00:00:00:00:00 The ethernet MAC address: if specified, this value temporarily overwrites the MAC address that is provided
by the OTP fuses

ethprime FEC Name of primary ethernet interface

fdt_addr 0x18000000 The destination address in the memory the fdt blobfile is stored to

fdt_file imxég-gmxé.dtb* The name of the fdt blobfile (dependends on the type of module)

fdt_high Oxfffffff Restricts the maximum address that the flattened device tree will be copied into upon boot. A value of
Oxffffffff prevents copying the fdt at all.

initrd_addr 0x12C00000 The destination address in the memory the initial ramdisk is stored to (optional)

initrd_high Oxfffffff Restricts the positioning of initrd images. A value of Oxffffffff prevents copying the ramdisk at all.

ip_dyn yes Specifies if the ip address should be assigned dynamically (via dhcp) or if a statically assigned ip address
should be used

ipaddr The static ip address used for network communication (not de-fined in default environment)

loadaddr 0x12000000 The destination address in the memory the bootfile/bootscript is stored to

mmcdev 0 The mmc device from which the bootscript/kernel/system is loaded (0: uSD, 1: external SD card, 2: onboard
eMMCQC)

mmcpart 1 The partion number from which the bootscript/kernel/system is loaded

netmask The static netmask used for network communication (not de-fined in default environment)

nfsroot The path to the NFS root filesystem used for netboot (not de-fined in default environment)

mmcroot /dev/mmcblkOp1 rootwait rw The root device for mmcboot (can also be used to pass addi-tional kernel parameters, e.g. rootwait, etc.)

script boot.scr The name of the (optional) bootscript

serverip The static ip address of a remote server used for netboot (not defined in default environment)

uimage ulmage The name of the kernel image

vid_dev0 hdmi, 1920x1080M@460,if=RGB24 | The definition of the first video device, see sec-tion "configuration of video devices" for details

vid_dev1 |db,LDB-XGA,if=RGB666 The definition of the second video device, see sec-tion "configuration of video devices" for details

O

congatec Copyright © 2013 congatec AG

QMXbms10 41/81

6.2.2

6.2.3

6.24

O

congatec

Furthermore, the following bootloader scripts are defined:

Script Description

bootcmd The default boot command that will be executed during system boot. By default, this script tries to load and execute a bootscript/kernel
from mmc. If this fails, netboot is performed.

bootcmd_mfg Sets the bootargs for manufacturing and tries to boot the manufacturing system

loadbootscript Loads the specified bootscript from mmc via ext2load

loadfdt Loads the fdtblob file from mmc (/boot folder) via ext2load

loaduimage Loads the kernel from mmc (/boot folder) via ext2load

mfgtool_args Used by bootcmd_mfg script to initialize the boot parameters for the manufacturing environment

mmcargs Used by the mmcboot script to initialize the boot parameters for mmc boot

mmcboot Script for booting from mmc. This script initializes the boot parameters (via mmcargs), loads the fdtblob file (via loadfdt) and finally starts
the kernel.

Attention: the kernel must already be present in memory (i.e. previously loaded via loaduimage).

netargs Used by the netboot script to initialize the boot parameters for network boot

netboot Tries to negotiate an ip address (dhcp or static) and boots from network. Observe: In order to perform network boot, additional settings,
such as nfsroot, serverip, etc. have to be adjusted accordingly.

Version Specific Hints

« Booting from USB devices is supported.

« In contrast to previous bootloader versions (e.g, u-boot 2009), the bootloader binary is NOT zero padded. Zero padding means, that the
first 1024 (0x400) bytes of the binary are filled with zeros (0x00). Because there is NO zero padding, the binary file (.imx) has to be copied to
SPI-flash or SD card with additional offset.

Special Functionality

The mfgdump u-boot command is used to print the content of the congatec manufacturing area in human readable format.

Runtime Configuration

The user interacts with the u-boot bootloader by means of a command-line interface, called hush shell, via a serial connection. Such a serial
connections has to be established with help of a serial terminal application like Tera Term or minicom.

The hush shell provides a set of commands and simple scripting functionality. The help command gives a short overview of the available commands.

Copyright © 2013 congatec AG QMXbms10 42/81

6.2.5

6.2.5.1

O

congatec

The boot sequence is controlled by a set of environment variables, simply called environment. The u-boot binary comes with a set of predefined
variables, modelling commonly used bootmodes, named standard environment. There are several commands in order to administrate
environment variables. The following table shows an important subset:

Command Description

setenv Modifies the value of an environment variable
saveenv Saves the environment to SPI-flash

env default -a Restore the default values of the entire environment
help Prints a help text for each command

print Prints a list of the current environment variables

Selecting the Boot Device

The u-boot bootloader version 2013.04 enables boot from MMC devices (SD, eMMC and micro-SD), SATA, USB and via network (TFTP/NFS).
The boot command loads a bootscript or a kernel from the boot device. If unavailable, network boot is performed.

In case of MMC devices, the variable ${mmcdev} specifies the boot device:

MMC Device ${mmcdev} ${mmcroot}

onboard micro-SD card | 0 /dev/mmcblkOp1 rootwait rw
onboard eMMC 1 /dev/mmcblk1p1 rootwait rw
external SD card 2 /dev/mmcblk2p1 rootwait rw

Furthermore, the variable ${mmcroot} is passed to the kernel in order to specify the location of the root filesystem, e.g. /dev/mmcblkOpl rootwait rw.

Network Boot

If a DHCP server provides the network configuration, enter run netboot in the bootloader console prompt to perform netwoork boot. The
following table shows an example of a minimal configuration to boot from network (dynamic network configuration via DHCP):

Variable Example Value
serverip 10.11.7.3
nfsroot /tftproot/rootfs

The following table shows the whole set of environment variables required for network boot in case of a static network:

Copyright © 2013 congatec AG QMXbms10 43/81

Variable Example Value

dyn_ip No

ipaddr 10.11.7.2

serverip 10.11.7.3

netmask 255.255.0.0

nfsroot /tftproot/rootfs

bootargs_nfs 'setenv bootargs ${bootargs} root=/dev/nfs ip=$ipaddr}:${serverip}:${gateway}: ${netmask} nfsroot=${nfsroot},v3,tcp'

@ Note

Network boot requires additional server components and configuration, providing a kernel and a root filesystem to the target system via
TFTP/NFS — please refer to section 3.3.1 "Network Boot".

6.2.5.2 Micro-SD Card

Adjust the environment to boot from a micro-SD card:
U-Boot > setenv mmcdev 0
U-Boot > setenv mmcroot /dev/mmcblkOpl rootwait rw
U-Boot > saveenv

@@= Note

There is no micro-SD card slot at conga-UMX6 modules.

6.2.5.3 eMMC

Adjust the environment to boot from the onboard eMMC:

U-Boot > setenv mmcdev 1
U-Boot > setenv mmcroot /dev/mmcblklpl rootwait rw
U-Boot > saveenv

6.25.4 SD Card

Adjust the environment to boot from an external SD card:

U-Boot > setenv mmcdev 2
U-Boot > setenv mmcroot /dev/mmcblk2pl rootwait rw
U-Boot > saveenv

O

congatec Copyright © 2013 congatec AG QMXbms10 44/81

6.25.5 SATA Device

Adjust the environment to boot from the SATA device:

U-Boot
U-Boot
U-Boot
U-Boot
U-Boot
U-Boot

@ Note

>
>
>
>
>
>

setenv bootcmd sata 'sata init; run loadfdt; run loaduimage; run mmcargs; bootm ${loadaddr} - ${fdt addr}'
setenv loadfdt 'ext2load sata ${mmcdev}:${mmcpart} ${fdt addr} boot/${fdt file}'

setenv loaduimage 'ext2load sata ${mmcdev}:${mmcpart} ${loadaddr} boot/${uimage}’

setenv mmcroot /dev/sdal rootwait rw

setenv bootcmd run bootcmd sata

saveenv

This example assumes kernel and device tree file (fdt) are stored at an EXT filesystem. For FAT filesystems, please use fatload instead of ext2load.

6.2.5.6 USB Device

Adjust the environment to boot from the USB device:

U-Boot
U-Boot
U-Boot
U-Boot
U-Boot
U-Boot

@ Note

>
>
>
>
>
>

setenv bootcmd usb 'usb start; run loadfdt; run loaduimage; run mmcargs; bootm ${loadaddr} - ${fdt addr}'
setenv loadfdt 'ext2load usb ${mmcdev}:${mmcpart} ${fdt addr} boot/${fdt file}"

setenv loaduimage 'ext2load usb ${mmcdev}:${mmcpart} ${loadaddr} boot/${uimage}’

setenv mmcroot /dev/sdal rootwait rw

setenv bootcmd run bootcmd usb

saveenv

This example assumes kernel and device tree file (fdt) are stored at an EXT filesystem. For FAT filesystems, please use fatload instead of ext2load.

6.2.6 Configuring the Video Devices

In order to set up the video devices, the bootloader refers to two environment variables:

e vid dev0 controls the first kernel framebuffer device

e vid devl controls the second kernel framebuffer device

In general, the configuration of a framebuffer device via the kernel command-line follows the definition:

video=mxcfbX:dev=device,mode,interface[,options]

The following table describes the command one by one:

O

congatec Copyright © 2013 congatec AG QMXbms10 45/81

O

congatec

Variable Description

X The number of the framebuffer device, usually O or 1. This is the number of the device, not the number of the framebuffer itself. During
startup, the kernel enumerates all the framebuffers and usually assigns fb0 and fo1 to the first device (respectively the background and
the foreground framebuffer). Therefore, mxcfb0 is usually assigned to b0 and fb1, mxcfb1 is usually assigned to fb2.

device Specifies the video device, usually hdmi or Idb (LVDS display bridge).
mode Specifies the video mode, e.g. LDB-XGA (in recent kernels, this entry is ignored for device |db and the DTS configuration is used instead)
interface Specifies the interface pixel format, e.g. if=RGB666 or if=RGB24

Additional options are available based on the device type, e.g. fbpix=BGR32 specifies the framebuffer layout. Find additional information about
framebuffer configuration in the documentation of the kernel source, e.g. in file Documentation/devicetree/ bindings/fb/fsl_ipuv3_fb.txt

Examples

The typical kernel command-line configuration for a 1920x1080 full HD display connected via HDMI is:
video=mxcfb0:dev=hdmi, 1920x1080M@60, if=RGB24

In u-boot, set the environment variable vid dev0 as follows:
setenv vid devO hdmi,1920x1080M@60,1if=RGB24

Please ensure, that ${vid_dev@} is correctly referenced at the kernel command-line, e.g.:
[..] video=mxcfb0:dev=${vid devO} [..]

The typical kernel command-line configuration for a 1024x768 18-bit XGA display connected via the LVDS display bridge is:
video=mxcfbl:dev=1db,LDB-XGA, if=RGB666

In u-boot, set the environment variable vid dev1 as follows:
setenv vid _devl ldb,LDB-XGA,if=RGB666

Please ensure, that ${vid_dev1} is correctly referenced at the kernel command-line, e.g.:
[..] video=mxcfbl:dev=${vid devl} [..]

The examples mentioned before describe the default configuration of the bootloader: framebuffer device 0 is assigned to a 1920x1080 full HD
device connected via hdmi; framebuffer device 1 is assigned to a 1024x768 18-bit LVDS display connected via the LVDS display bridge.

Copyright © 2013 congatec AG QMXbms10 46/81

6.2.7 Boot Loader Types

There are two types of bootloaders:
 Standard bootloader
This is the standard bootloader for booting into a Linux based system (with or without device tree support).

e Bootloader for Android

This bootloader is required for booting into an Android based system. Compared to the standard bootloader, it has enhanced capabilities and
a different environment setup. Building a conga-QMX6/UMX6é bootloader for manufacturing purposes is not supported for bootloader version

2013.04

> Note

The bootloader is tailored to the part number of the congatec module. Use matching bootloader and part number for each module.

6.2.8 Build Process

The following steps describe the bootloader build process using the standalone cross-development environment (see section 2.3 "Setting Up
the Standalone Cross-Development Environment") for conga-QMX6 (part number 016103):

1. Fetch the source code and switch to correct branch:

~$ git clone https://git.congatec.com/arm/gqmx6 uboot.git
~$ cd gmx6 uboot
~/qmx6_uboot$ git checkout -b cgt_imx_v2013.04 3.10.17_1.0.2 origin/cgt_imx_v2013.04 3.10.17_1.0.2

2. Set up the build environment:
~/qmx6_uboot$ source ~/sourceme

@ Note
Follow section 2.3 "Setting Up the Standalone Cross-Development Environment"” to set up your build environment and the stated sourceme file.

3. Select the matching configuration and build the bootloader:

~/qmx6_uboot$ make cgt gmx6 pn016103 config
~/qmx6_uboot$ make

As a result, a part number based bootloader binary has been created in the build directory, e.g. u-boot.pn016103.imx

4. Flash the bootloader to the target system with the NXP MFGTool.

congatec Copyright © 2013 congatec AG QMXbms10 47/81

6.3 u-boot 2016.01

The source code for uBoot 2016.01 is provided on the congatec git server:

» https://git.congatec.com/arm/gmxé_uboot), branch cgt_imx_v2016.01_1.0.0

conga-UMXé is supported since git rev:

+ https://git.congatec.com/arm/gmxé_uboot/commit/ef1818de1e0a29d75927336¢1c007a2e67645d22

It is suitable to boot i.MX6 Linux kernels with and without device tree support.

The Secondary Program Loader (SPL) implementation enables a common u-boot build (which is divided into two binaries: SPL and u-boot. img)
for all product variants:

+ the bootloader has to be built just once per product group (e.g. for conga-QMXé or conga-UMX®6), instead of individual builds for each variant

» no part number specific configuration required

+ the two resulting binaries (SPL and u-boot.img) have to be flashed to distinct locations in the SPI-flash

=) Note

Bootloader version 2016.01 is recommended for new designs. Start the development on top of the latest bootloader release.

6.3.1 Environment Variables

The behavior of the bootloader is controlled by environment variables. The bootloader binary serves a predefined default environment. The
following table shows the environment variables of the standard bootloader version u-boot 2016.01:

Variable Default Description

baudrate 115200 The baudrate for the serial terminal connection

board_rev MX6Q (resp. MX6DL) Depending on the type of i.MX6 CPU, this variable contains MX6Q or MX6DL

boot_fdt try Specifies if a kernel with separate devicetree blob file will be loaded. Possible values: yes, no, try

bootdelay 3 The boot delay in seconds

bootm_size 0x10000000 This variable defines the size of the region allowed for use by the bootm command

console ttymxc1 The device for console output

ethact FEC Name of active ethernet interface

ethaddr 00:00:00:00:00:00 The efthernet MAC address: if specified, this value temporarily overwrites the MAC address provided by the
OTP fuses

O

congatec Copyright © 2013 congatec AG QMXbms10 48/81

ethprime FEC Name of primary ethernet interface

fdt_addr_r 0x18000000 The destination address in the memory the fdt blobfile is stored to

fdt_file undefined The name of the fdt blobfile (dependend from the type of module)

image ulmage The name of the kernel image

ip_dyn yes Specifies whether the ip address is assigned dynamically (via dhcp) or a statically assigned ip address is used

ipaddr The static ip address used for network communication (not defined in default environment)

loadaddr 0x12000000 The destination address in the memory the bootfile/bootscript is stored to

mmcdev 0 The mmc device from which the bootscript/kernel/system is loaded (0: puSD, 1: external SD card, 2: onboard
eMMCQC)

mmcpart 1 The partion number from which the bootscript/kernel/system is loaded

baudrate 115200 The baudrate for the serial terminal connection

mmcroot /dev/mmcblkOp1 rootwait rw The root device for mmcboot (can also be used to pass addi-tional kernel parameters, e.g. rootwait, etc.)

nfsroot The path to the NFS root filesystem used for netboot (not de-fined in default environment)

script boot.scr The name of the (optional) bootscript

serverip The static ip address of a remote server used for netboot (not defined in default environment)

vid_dev0 hdmi, 1920x1080M@460,if=RGB24 | The definition of the first video device, see section "configuration of video devices" for details

vid_dev1 |db,LDB-XGA,if=RGB666 The definition of the second video device, see section "configuration of video devices" for details

Furthermore, the following bootloader scripts are defined:

Script Description

bootecmd The default boot command that will be executed during system boot. By default, this script locks the SPI-flash, tries to load and execute a
bootscript/kernel from mmc. If this fails, netboot is performed.

bootcmd_android An alternate boot command that can be used to boot into an Android based operating system

bootscript Just executes an already sourced script via the source command

dfu_alt_info

dfu_alt_info_img

dfu_alt_info_spl

dfu_spi
findfdt Sets the correct value of variable ${fdtfile} according the value of variable ${board_rev}. Usually, the script findfdt has to be executed before
loading the fdtfile via loadfdt.
loadbootscript Noads the specified bootscript from mmc via ext2load
loadfdt Loads the fdtblob file from mmc (/boot folder) via ext2load
loadimage Loads the kernel from mmc (/boot folder) via ext2load
mfgtool_args Used by bootcmd_mfg script to initialize the boot parameters for the manufacturing environment
o mmcargs Used by the mmcboot script to initialize the boot parameters for mmc boot

congatec Copyright © 2013 congatec AG QMXbms10 49/81

mmcargs_android Used by the bootcmd_android script to initialize the boot parameters for booting into android.

mmcboot Script for booting from mmc. This script initializes the boot parameters (via mmcargs), loads the fdtblob file (via loadfdt) and finally starts
the kernel. Note: The kernel must already be present in memory (i.e. previously loaded via loadimage).

netargs Used by the netboot script to initialize the boot parameters for network boot

netboot Tries to negotiate an ip address (dhcp or static) and boots from network. Observe: In order to perform network boot, additional settings,

such as nfsroot, serverip, etc. have to be adjusted accordingly.

spilock Protects the MFG area in the SPI-flash for beeing erased/corrupted by mistake (the MFG area, which will be initialized during production,
contains important data that should not be destroyed).

update_sd_firmware

6.3.2 Version Specific Hints

The congatec u-boot 2016.01 is based on the SPL framework to unify all existing variants:

+ inthe past (u-boot 2013 and before), there was a dedicated bootloader binary for each module variant. Main reason for this was the memory
configuration which is different for each module variant (due to memory size, DDR clock frequency, density, etc.).

+ abootloader based on SPL is divided into two parts: a small binary (SPL) that will be loaded into onchip static RAM (OCRAM) in order to
perform the DDR memory setup and the actual bootloader image (uboot.img) which will be loaded to DDR memory once SPL has finished
the memory configuration. Two parts of the bootloader have to be flashed to distinct offsets of the SPI-flash.

+ the SPL binary has to be flashed to offset 0x400
+ the uboot.img binary has to be flashed to offset 0x10000
« u-boot 2016.01 supports booting from USB devices. See section 6.3.5.6 "USB Device" in order to perform USB boot.

6.3.3 Special Functionality
The SPL uses a mechanism to configure the onboard memory (basic setup of geometry, timings as well as calibration data) for each module
variant. This code performs an automatic detection of the module variant and configures the memory accordingly. The build process generates

a unified bootloader (consisting of SPL and uboot.img binaries) which works with all module variants. In previous implementations, each variant
required an individual bootloader.

6.3.4 Runtime Configuration

The user interacts with the u-boot bootloader by means of a command-line interface, called hush shell, via a serial connection. Such a serial
connection has to be established with help of a serial terminal application like Tera Term or minicom.

O

congatec Copyright © 2013 congatec AG QMXbms10 50/81

6.3.5

6.3.5.1

O

congatec

The hush shell provides a set of commands and simple scripting functionality. The help command gives a short overview of the available commands.

The boot sequence is controlled by a set of environment variables, simply called environment. The u-boot binary comes with a set of predefined
variables, modelling commonly used bootmodes, called standard environment.

There are several commands in order to administrate environment variables. The following table shows an important subset:

Command Description

setenv Modifies the value of an environment variable
saveenv Saves the environment to SPI-flash

env default variable Restores the default value of a variable

env default -a Restore the default values of the entire environment
help Prints a help text for each command

print Prints a list of the current environment variables

Selecting the Boot Device

The u-boot bootloader version 2016.01 supports boot from MMC devices (SD, eMMC and micro-SD), SATA, USB and via network (TFTP/NFS).
The boot command loads a bootscript or a kernel from the boot device. If unavailable, network boot is performed. In case of MMC devices,
the variable ${mmcdev} specifies the boot device:

MMC Device ${mmcdev} ${mmcroot}

onboard micro-SD card | 0 /dev/mmcblkOp1 rootwait rw
onboard eMMC 1 /dev/mmcblk1p1 rootwait rw
external SD card 2 /dev/mmcblk2p1 rootwait rw

Furthermore, the variable ${mmcroot} is passed to the kernel in order to specify the location of the root filesystem, e.g. /dev/mmcblkOpl rootwait rw.

Network Boot

If a DHCP server provides the network configuration, enter run netboot in the bootloader console prompt to perform network boot.

The following table shows an example of a minimal configuration to boot from network (dynamic network configuration via DHCP):

Variable Example Value
serverip 10.11.7.3
nfsroot /tftproot/rootfs

Copyright © 2013 congatec AG QMXbms10 51/81

The following table shows the whole set of environment variables required for network boot in case of static network:

Variable Example Value

dyn_ip No

ipaddr 10.11.7.2

serverip 10.11.7.3

netmask 255.255.0.0

nfsroot /tftproot/rootfs

bootargs_nfs 'setenv bootargs ${bootargs} root=/dev/nfs ip=$ipaddr}:${serverip}:${gateway}: ${netmask} nfsroot=${nfsroot},v3,tcp'

> Note

Network boot requires additional server components and configuration, providing a kernel and a root filesystem to the target system via
TFTP/NFS — please refer to section 3.3.1 "Network Boot".

6.3.5.2 Micro-SD Card

Adjust the environment to boot from a micro-SD card:

U-Boot > setenv mmcdev 0
U-Boot > setenv mmcroot /dev/mmcblkOpl rootwait rw
U-Boot > saveenv

@@= Note

There is no micro-SD card slot at conga-UMX6 modules.

6.3.5.3 eMMC

Adjust the environment to boot from the onboard eMMC:

U-Boot > setenv mmcdev 1
U-Boot > setenv mmcroot /dev/mmcblklpl rootwait rw
U-Boot > saveenv

6.3.5.4 SD Card

Adjust the environment to boot from an external SD card:

U-Boot > setenv mmcdev 2
U-Boot > setenv mmcroot /dev/mmcblk2pl rootwait rw

(:) U-Boot > saveenv

congatec Copyright © 2013 congatec AG QMXbms10 52/81

6.3.5.5 SATA Device

Transfer the root filesystem to the SATA device and adjust the environment:

U-Boot > setenv bootcmd sata 'sata init; run loadfdt; run loaduimage; run mmcargs; bootm ${loadaddr} - ${fdt addr}'
U-Boot > setenv loadfdt 'ext2load sata ${mmcdev}:${mmcpart} ${fdt addr} boot/${fdt file}'

U-Boot > setenv loaduimage 'ext2load sata ${mmcdev}:${mmcpart} ${loadaddr} boot/${uimage}’

U-Boot > setenv mmcroot /dev/sdal rootwait rw

U-Boot > setenv bootcmd run bootcmd sata

U-Boot > saveenv

@ Note

This example assumes kernel and device tree file (fdt) are stored at an EXT filesystem. For FAT filesystems, please use fatload instead of ext2load.

6.3.5.6 USB Device

Transfer the root filesystem to the USB device and adjust the environment:

U-Boot > setenv bootcmd usb 'usb start; run loadfdt; run loaduimage; run mmcargs; bootm ${loadaddr} - ${fdt addr}'
U-Boot > setenv loadfdt 'ext2load usb ${mmcdev}:${mmcpart} ${fdt addr} boot/${fdt file}'

U-Boot > setenv loaduimage 'ext2load usb ${mmcdev}:${mmcpart} ${loadaddr} boot/${uimage}'

U-Boot > setenv mmcroot /dev/sdal rootwait rw

U-Boot > setenv bootcmd run bootcmd usb

U-Boot > saveenv

@ Note

This example assumes that kernel and device tree file (fdt) are stored at an EXT filesystem. For FAT filesystems, please use fatload instead of ext2load.

6.3.6 Configuring the Video Devices

In order to set up the video devices, the bootloader refers to two environment variables:

« vid dev@ controls the first kernel framebuffer device.

+ vid devl controls the second kernel framebuffer device.

In general, the configuration of a framebuffer device via the kernel command-line follows the definition:

video=mxcfbX:dev=device,mode,interface[,options]

The following table describes the command one by one:

O

congatec Copyright © 2013 congatec AG QMXbms10 53/81

O

congatec

Variable Description

X The number of the framebuffer device, usually O or 1. This is the number of the device, not the number of the framebuffer itself. During startup,
the kernel enumerates all the framebuffers and usually assigns fb0 and fb1 to the first device (respectively the background and the foreground
framebuffer). Therefore, mxcfbO is usually assigned to fb0 and fb1, mxcfb1 is usually assigned to fb2.

device Specifies the video device -usually hdmi or Idb (LVDS display bridge).
mode Specifies the video mode; e.g. LDB-XGA (in recent kernels, this entry is ignored for de-vice Idb and the DTS configuration is used instead)
interface Specifies the interface pixel format, e.g. if=RGB666 or if=RGB24

Additional options are available based on the device type e.g. fbpix=BGR32 specifies the framebuffer layout.

Find additional information about framebuffer configuration in the documentation of the kernel source, i.e. in file Documentation/devicetree/
bindings/fb/fsl_ipuv3_fb.txt

Examples

The typical kernel command-line configuration for a 1920x1080 full HD display connected via HDMI is:
video=mxcfb0O:dev=hdmi, 1920x1080M@60, if=RGB24

In u-boot, set the environment variable vid dev0 as follows:
setenv vid devO hdmi,1920x1080M@60,1if=RGB24

Please ensure, that ${vid_dev@} is correctly referenced at the kernel command-line, e.g.:
[..] video=mxcfb0:dev=${vid devO} [..]

The typical kernel command-line configuration for a 1024x768 18-bit XGA display connected via the LVDS display bridge is:
video=mxcfbl:dev=1db,LDB-XGA, if=RGB666

In u-boot, set the environment variable vid dev1 as follows:
setenv vid _devl ldb,LDB-XGA,if=RGB666

Please ensure, that ${vid_dev1} is correctly referenced at the kernel command-line, e.g.:
[..] video=mxcfbl:dev=${vid devl} [..]

The examples mentioned before describe the default configuration of the bootloader: framebuffer device 0 is assigned to a 1920x1080 full HD
device connected via hdmi; framebuffer device 1 is assigned to a 1024x768 18-bit LVDS display connected via the LVDS display bridge.

Copyright © 2013 congatec AG QMXbms10 54/81

6.3.7 Boot Loader Types

There are three distinct bootloader types:

» Standard bootloader (SPL build)
« HAB (High Assurance Boot) enabled bootloader (non-SPL build)
« MFG (Manufacturing) bootloader (non-SPL build)

Beginning with u-boot 2016.01, the term “standard bootloader” refers to unified SPL-enabled bootloader builds. Such a SPL-enabled
bootloader, is suitable for all the module variants of one product group, due to integrated memory detection and calibration routines. The
HAB and MFG bootloaders are non-SPL builds. A non-SPL bootloader is unable to detect and calibrate the memory by itself. Therefore, the
source code contains different defconfig files for each distinct memory configuration — please pick the one fitting to your particular module.

6.3.8 Build Process

The following steps describe the build process of a standard bootloader using the standalone cross-development environment (see section 2.3
"Setting Up the Standalone Cross-Development Environment").

In the build process, the following configuration targets (standard bootloader, SPL build) are defined:

Defconfig File Description
cgtgmxbeval_defconfig Configuration for a conga-QMXé standard bootloader
cgtumxé_defconfig Configuration for a conga-UMXé standard bootloader

Execute the following steps to build the standard bootloader for conga-QMXé6 (all variants) :

1. Fetch the source code and switch to correct branch:

~$ git clone https://git.congatec.com/arm/gqmx6 uboot.git
~$ cd gmx6 uboot
~/qmx6_uboot$ git checkout -b cgt_imx v2016.01 1.0.0 origin/cgt_imx_v2016.01 1.0.0

2. Set up the build environment:
~/qmx6_uboot$ source ~/sourceme

@ Note

Follow section 2.3 "Setting Up the Standalone Cross-Development Environment" to set up your build environment and the stated sourceme file.

O

congatec Copyright © 2013 congatec AG QMXbms10 55/81

3. Select the matching configuration and build the bootloader. This is an example for conga-QMXé:

~/qmx6_uboot$ make cgtgmxbeval defconfig
~/qmx6_uboot$ make

The bootloader binaries (SPL and u-boot.img) will be created in the build directory.

4. Flash the bootloader to the target system with the NXP MFGTool.

O

congatec Copyright © 2013 congatec AG QMXbms10 56/81

Falcon Mode (u-boot)

7.1

7.2

7.3

7.3.1

O

congatec

Overview

A standard u-boot build consists of two image files: u-boot.img and SPL. The bootrom is loading the SPL image which performs some basic/
initial configuraion tasks. Afterwards, SPL loads the u-boot.img which loads device-tree and kernel image files. Falcon mode means, enabling
SPL to load/execute the kernel image directly. This accelerates boot time but requires special u-boot configuration as well as a special SD card/
eMMC setup. congatec's falcon mode implementation enables SPL to:

» Load the kernel image directly from an arbitrary MMC device (micro-SD, SD, EMMC)
+ Select the boot target (u-boot.img/kernel) depending on GPIO-level or environment-settings

» Loadthe bootloader image file (u-boot.img) from an arbitrary MMC device. Please note, the environment still has to be stored at the SPI-flash.

The following sections describe the necessary tasks to create a falcon mode enabled SPL image and show how to perform a boot device setup.

Requirements

A Linux-based x86 host system with working cross-compiler setup is required - refer to section 2 "Host System Setup".

Setting Up the Bootloader

congatec provides falcon mode enabled u-boot sources (branch cgt_imx_v2016.01_1.0.0) for all i.MX6é based designs (conga-QMX6/UMX6),
starting with u-boot version 2016.01, commit 2a24305.

Downloading Sources

Clone the latest u-boot 2016.01 sources (commit 2a24305 or newer) from the congatec public git server:
$ cd /PATH/TO/YOUR/PLAYGROUND
$ git clone https://git.congatec.com/arm/qmx6 uboot.git
#[...]
$ cd gmx6_uboot
$ git checkout remotes/origin/cgt imx v2016.01 1.0.0 -b cgt imx v2016.01 1.0.0

Copyright © 2013 congatec AG QMXbms10 57/81

7.3.2 Configuration

1. Select the matching basic default configuration (defconfig) depending on the module-type in use:
If target system is conga-QMX6:
$ make cgtgmx6eval defconfig
If target system is conga-UMX6:
$ make cgtumx6 defconfig

2. In order to enable falcon mode, special configuration is required at compile-time. The congatec falcon mode implementation provides
the essential configuration options via Kconfig:
$ cd /PATH/TO/YOUR/PLAYGROUND/qgmx6 uboot
$ make menuconfig

3. Navigate to the congatec falcon mode submenu and perform the configuration as follows:

ARM architecture
-> congatec misc
-> falcon mode

As mentioned before, the main use-case of the congatec falcon mode implementation is reducing boot time. Furthermore, the falcon mode
implementation enables to store (load) the u-boot.img image file at (from) an arbitrary MMC device.

Use-Case |) Load Kernel Image Directly (Quickboot)

A minimal configuration, enabling SPL to directly load the Linux kernel image from a distinct MMC device, is shown below:

Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features.
Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded

<M> module < > module capable

evice holding kernel/uboot.img (Load image from uSD card) --->
nable load/execution of the kernel image via SPL

nable boot selection via GPIO

nable boot selection via environment settings

< Exit > < Help => < Save > < Load =>

O

congatec Copyright © 2013 congatec AG QMXbms10 58/81

@ Note

Falcon mode extends/changes boot order from SPI (1) to MMC (1), SPI (2).

If "Enable load/execution of the kernel image via SPL" is set, each device is searched for the kernel image first, if there is no kernel image,
they are searched for the bootloader image (u-boot.img) afterwards.

The configuration options:

[1] Enable boot selection via GPIO
[1] Enable boot selection via environment settings

are optional but recommended.

The former configuration option enables selection of the boot image (kernel/u-boot.img) via GPIO. By default, this is mapped to the LID
button; the mapping is adaptable via the BOOT_MODE_BTN C-preprocessor constant.

The latter enables boot image selection via the boot_os environment variable. If boot os is set, the kernel image is directly loaded by SPL.

Both configuration options are combinable.

@ Note

O

congatec

If boot_os is set to 1, SPL always loads the kernel image directly. There are two ways to get back to the u-boot command prompt:
e Ejecting MMC:

If there is no valid kernel image at the specified MMC device or there is no mmc device, u-boot.img is loaded as a fallback.
« GPIO override:

If "Enable boot selection via GPIO" is also enabled, loading u-boot.img can be forced via GPIO.

Use-Case Il) Load Bootloader Image (u-boot.img) from MMC device

In order to enable SPL to load the bootloader image (u-boot.img) from an MMC device instead of SPI-flash, perform the u-boot configuration
as shown below:

Copyright © 2013 congatec AG QMXbms10 59/81

.config - U-Boot 2016.01 Configuration
> ARM architecture > congatec misc > falcon mode
falcon mode
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes features.
Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded
<M> module < > module capable

[&] Enable falcon mode

levice holding kernel/uboot.img (Load image from uSD card) --->
[1] "nable load/execution of the kernel image via SPL

< Exit > < Help > < Save > < Load >

@@= Note

The u-boot environment is still stored at the SPI-flash; the current implementation does not enable to store the u-boot environment at a different device.
Falcon mode extends/changes boot order from SPI (1) to MMC (1), SPI (2). If "Enable load/execution of the kernel image via SPL" is unset, SPL
tries to load the u-boot.img from the selected MMC device first. If there is no u-boot.img, SPL tries to load the u-boot.img from the SPI-flash.

4. Select the desired boot device by entering the "Device holding kernel/u-boot.img" submenu:

.config - U-Boot 2016.01 Configuration
> ARM architecture > congatec misc > falcon mode

Device holding kernel/uboot.img
Use the arrow keys to navigate this window or press the
hotkey of the item you wish to select followed by the <SPACE
BAR>. Press <?> for additional information about this

|(X)PLoad image from uSD card

() 'oad image from EMMC
() lLoad image from SD cardll

< Help >

5. Finally, save and exit the graphical configuration.

60/81

congatec Copyright © 2013 congatec AG QMX6éms10

@@= Note

7.3.3

7.3.4

The graphical configuration provides extensive built-in help messages for each falcon mode related configuration option.

Build Falcon Mode Enabled Bootloader

Execute the following command in order to create the falcon mode enabled u-boot.img and SPL image:
$ make

Update Target System

Use the MFGTool to transfer the falcon mode enabled bootloader images (SPL and u-boot.img) to the i.MXé based target system.
In order to flash a custom bootloader, proceed as follows:
1. Copy both image files (SPL and u-boot.img) to Profiles\<module-type>\OS Firmware\update.devel

2. Adapt MFGTool's configuration file (cfg.ini) as follows:

name = uboot2016-devel-SPL SPI
DEVEL2016 SPL FILENAME = SPL
DEVEL2016 UBOOT FILENAME = u-boot.img

@@= Note

7.4

7.4.1

O

congatec

The section 2.3 "Setting Up the Standalone Cross-Development Environment" describes the usage of the MFGTool in general.

Setting Up Boot Device
The congatec u-boot falcon mode implementation supports to load the kernel image file from eMMC, SD card and micro-SD card. This needs

a special boot device setup. The following sections describe the necessary steps to create a boot medium accomplishing the falcon mode
requirements.

Use-Case |: Boot Kernel Image Directly (Quickboot)

If the u-boot config option "Enable load/execution of the kernel image via SPL" is set, the SPL tries to load a kernel image from the selected
MMC device.

Copyright © 2013 congatec AG QMXbms10 61/81

7.4.1.1 Setting Up Partition/Filesystem

SPL expects the following files at defined offsets of the selected MMC device:

File Offset in sectors of 512 Max. size in sectors of Notes
bytes (KiB) 512 bytes (KiB)
Argument File 0x800 (1024 KiB) 0x800 (1024 KiB) Kind of u-boot internal device tree representation
created with help of the u-boot command spl export
Kernel Image (ulmage) 0x1000 (2048 KiB) 0x4000 (8192 KiB) Actual maximum depends on offset of the first partition

In falcon mode, kernel image and argument file have to be written to the raw MMC device at fix addresses instead of putting them into a
filesystem. As a result, the start offset of the first partition has to be moved. congatec recommends to move the start offset to byte 32768.

Option 1) Boot from SD Card / micro-SD Card

1. Create a new partition layout at the micro-SD card as shown below:

(1) Start fdisk;

$ sudo fdisk /dev/sdX

(2) Create a new dos partition table

Command (m for help): o <ENTER>

(3) Add a new partition

Command (m for help): n <ENTER>

(4) Select primary partition

Command (m for help): p <ENTER>

(5) Enter partition number

Command (m for help): 1 <ENTER>

(6) Enter start sector offset (in sectors of 1 * 512 = 512 bytes)
Command (m for help): 32768 <ENTER>

(7) Enter end sector (in sectors of 1 * 512 = 512 bytes)
Command (m for help): <ENTER>

(8) Write the partition table to device

Command (m for help): w <ENTER>

(9) Quit fdisk

Command (m for help): q <ENTER>

(10) Create filesystem for rootfs at partition 1

$ sudo mkfs.ext3 /dev/sdX

Caution

Adapt sdX / sdX1 to whatever your device / partition is recognized as. Otherwise, loss of data may occur.

O

congatec Copyright © 2013 congatec AG QMXbms10 62/81

2. Decompress the root filesystem image to the recently created partition:

sudo mkdir -p /mnt/imgprep

sudo mount /dev/sdX1l /mnt/imgprep

sudo tar -xvjf your yocto image.tar.bz2 -C /mnt/imgprep
sudo sync

sudo umount /dev/sdX1l

A A

Option Il) Boot from eMMC
3. Set up a micro-SD card - please refer to section Option I) Boot from SD Card / micro-SD Card.

4. Transfer the tar.bz2-compressed root filesystem image to the micro-SD card:

(1) Clear the first 1000 512 byte sectors of the eMMC

$ sudo dd if=/dev/zero of=/dev/mmcblkl count=1000 bs=512
(2) Start fdisk

$ sudo fdisk /dev/mmcblkl

(3) Create a new dos partition table

Command (m for help): o <ENTER>

(4) Add a new partition

Command (m for help): n <ENTER>

(5) Select primary partition

Command (m for help): p <ENTER>

(6) Enter partition number

Command (m for help): 1 <ENTER>

(7) Enter start sector offset (in sectors of 1 * 512 = 512 bytes)
Command (m for help): 32768 <ENTER>

(8) Enter end sector (in sectors of 1 * 512 = 512 bytes)
Command (m for help): <ENTER>

(9) Write the partition table to device

Command (m for help): w <ENTER>

(10) Quit fdisk

Command (m for help): q <ENTER>

(11) Create filesystem for rootfs at partition 1

$ sudo mkfs.ext3 -j /dev/mmcblklpl

5. Decompress the root filesystem image to the recently created partition at the eMMC device:
sudo mkdir -p /mnt/imgprep

sudo mount /dev/mmcblklpl /mnt/imgprep

cd /

sudo tar -xjvf your yocto image.tar.bz2 -C /mnt/imgprep

sudo sync

A A

O

congatec Copyright © 2013 congatec AG QMXbms10 63/81

7.41.2 Setting Up Raw MMC Device

The following steps will finalize the setup of the boot device and activate the falcon mode.

1. Power on the i.MX6 based target system

2. Press any key to enter u-boot command prompt

3. Build up kernel command-line arguments using the following commands at the u-boot command prompt:

$ run findfdt

#
$
$
#
$
$
#
$
$
#

mmc dev X

In case of boot device: micro SD card

setenv mmcdev 0

setenv mmcroot '/dev/mmcblkOpl ro'

In case of boot device: eMMC

setenv mmcdev 1

setenv mmcroot '/dev/mmcblklpl ro'

In case of boot device: SD card

setenv mmcdev 2

setenv mmcroot '/dev/mmcblk2pl ro'

X depends on boot device: 0-> micro SD card; 1->eMMC ; 2-> external SD card

$ run mmcargs
$ run loadimage
$ run loadfdt

4. Create the argument file and copy it to the selected MMC device at sector offset 0x800

$ spl export fdt ${loadaddr} - ${fdt addr r}

Booting

kernel from Legacy Image at 12000000 ...

Image Name: Linux-4.1.15-1.2.0 cgt-imx6+gd83
Image Type: ARM Linux Kernel Image (uncompressed)
Data Size: 2941472 Bytes = 2.8 MiB
Load Address: 10008000
Entry Point: 10008000
Verifying Checksum ... OK

Flattened Device Tree blob at 18000000

Booting
Loading
Loading
subcommand
subcommand
Loading

using the fdt blob at 0x18000000

Kernel Image ... OK

Device Tree to 1fff2000, end 1ffff4b9 ... OK
not supported

not supported

Device Tree to 1ffel000, end 1fffl4b9 ... OK

$ mmc write Ox1ffel000 Ox800 0x800

O

congatec Copyright © 2013 congatec AG QMXbms10

64/81

@ Note

Please look for the line "Argument image is now in RAM: [...]":

This line mentions the memory address of the generated argument file. The named address is used as source address of the subsequent
mmc write invocation. This writes the argument file to the selected MMC device.

5. Copy the kernel image file to the selected MMC device at sector offset 0x1000
$ mmc write ${loadaddr} 0x1000 0x4000

6. Set the boot os environment variable (optional)

$ setenv boot_os 1
$ saveenv

@ Note

7.4.2

O

congatec

If the u-boot configuration option "Enable boot selection via environment settings" has been set, it is required to set the environment variable
boot os. If boot os is set, SPL will directly load the kernel image from the selected MMC device. Otherwise, SPL will load the u-boot.img
image file.

Use-Case II: Load Bootloader Image (u-boot.img) from MMC Device

If the u-boot config option "Enable load/execution of the kernel image via SPL" is not set, the SPL tries to load the bootloader image (u-boot.
img) from the selected MMC device.

The u-boot.img image file has to be written to the selected MMC device at offset 69K:
$ cd /PATH/TO/YOUR/PLAYGROUND/qgmx6 uboot
$ sudo dd if=u-boot.img of=/dev/sdX bs=1k seek=69

Caution

Adapt sdX / sdX1 to whatever your device / partition is recognized as. Otherwise, loss of data may occur.

Copyright © 2013 congatec AG QMXbms10 65/81

High Assurance Boot (HAB)

8.1

8.2

8.2.1

O

congatec

Overview

The High Assurance Boot (HAB) technology is currently only supported under u-boot 2016.01 non-SPL builds. It represents secure boot at
NXP's i.MX6 CPU-family. HAB supports a wide variety of NXP processors but this chapter is limited to the i.MXé SOC.

HAB enables a so called chain of trust. This term describes a setup where each software involved at the boot process has to be validated using
the ROM embedded HAB library. Another option is the encrypted boot.

The subject of this chapter is limited to the topic of restricted boot. Follow the steps to restrict the bootup of your design to signed u-boot
bootloader images.

For encrypted boot or a gapeless chain of trust setup, refer to the official NXP documentation.

Requirements

A working cross-compiler setup is required. The following steps describe the necessary preparations in order to sign u-boot images.

Download/Setup

1. Obtain cst-2.3.2.tar.gz from the NXP website www.nxp.com :

$ cp cst-2.3.2.tar.gz /PATH/TO/YOUR/HAB/PLAYGROUND/ .
$ tar -xvf cst-2.3.2.tar.gz

2. Clone the latest u-boot sources with HAB support (2016.01) from the congatec public git server:
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND
$ git clone https://git.congatec.com/arm/qmx6 uboot.git
#[...]
$ cd gmx6_uboot
$ git checkout remotes/origin/cgt imx v2016.01 1.0.0 -b cgt imx v2016.01 1.0.0

3. Clone the latest version of the cgtlVThelper.py script (python3) from the congatec public git server:
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND
$ git clone https://git.congatec.com/arm/imx_cgtIVThelper.git cgtIVThelper
#[...]

Copyright © 2013 congatec AG QMXbms10 66/81

8.2.2 Building u-boot with HAB Support Enabled

Currently, High Assurance Boot (HAB) is only supported by u-boot 2016.01 non-SPL builds. There are dedicated non-SPL u-boot default

configurations with HAB support enabled by default:
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/gmx6 uboot
$ find . -iname "*cgt*hab*defconfig"
./configs/cgtumx6_hab 1024 64 528 defconfig
./configs/cgtumx6_hab 1024 64 400 defconfig
./configs/cgtumx6_hab 1024 32 400 defconfig
./configs/cgtgmx6eval hab 1024 32 400 defconfig
./configs/cgtgmx6eval hab 1024 64 528 defconfig
./configs/cgtgmx6eval hab 1024 64 400 defconfig
./configs/cgtgmx6eval hab 2048 64 400 defconfig
./configs/cgtgmx6eval hab 2048 64 528 defconfig
./configs/cgtgmx6eval hab 4096 64 528 defconfig

@ Note

The various defconfig files for a given design just differ in the memory configuration (e.g. 1024_64_528 — size_width_clock — size: 1024MB,
width: 64-bit, clock: 528 MHz).

Building HAB-enabled u-boot for a 1024MB 64-bit 528MHz conga-QMX6 variant (e.g. PN016103):

$ export ARCH=arm

$ export CROSS COMPILE=arm-poky-linux-gnueabi-
$ # $PATH adjustment is maybe also required

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/gmx6 uboot

$ make cgtgmx6eval hab 1024 64 528 defconfig

$ make -j4 V=1

#[...]

Image Type: Freescale IMX Boot Image

Image Ver: 2 (1.MX53/6/7 compatible)

Data Size: 466944 Bytes = 456.00 kB = 0.45 MB

Load Address: 177ff420
Entry Point: 17800000
HAB Blocks: 177ff400 00000000 0006fcOO

@ Note

Please note the line "HAB Blocks", those three values are required later on.
For more information, refer to u-boot 2016.01 Documentation:

O https://git.congatec.com/arm/gmxé_uboot/blob/cgt_imx_v2016.01_1.0.0/doc/README.mxc_hab

congatec Copyright © 2013 congatec AG QMXbms10 67/81

The latest mfg defconfig files also enable HAB support by default. In order to build a signed mfg u-boot, pick the matching one of the following
default configurations:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/qmx6_uboot
$ find . -iname "*cgt*mfg*defconfig"
./configs/cgtumx6_mfg 1024 64 400 defconfig
./configs/cgtumx6 _mfg 1024 32 400 defconfig
./configs/cgtumx6 _mfg 1024 64 528 defconfig
./configs/cgtgmx6eval mfg 4096 64 528 defconfig
./configs/cgtgmx6eval mfg 1024 32 400 defconfig
./configs/cgtgmx6eval mfg 2048 64 528 defconfig
./configs/cgtgmx6eval mfg 2048 64 400 defconfig
./configs/cgtgmx6eval mfg 1024 64 528 defconfig
./configs/cgtgmx6eval mfg 1024 64 400 defconfig

8.2.3 Setting Up Public Key Infrastructure (PKI)

1. Generate the PKl tree (CA, SRKs and certificates/keys) as follows:
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2
$ cd keys
$./hab4_pki_tree.sh
B o o o e
This script is a part of the Code signing tools for Freescale's
High Assurance Boot. It generates a basic PKI tree. The PKI
tree consists of one or more Super Root Keys (SRK), with each
SRK having two subordinate keys:
+ a Command Sequence File (CSF) key
+ Image key.
Additional keys can be added to the PKI tree but a separate
script is available for this. This this script assumes openssl
is installed on your system and is included in your search
path. Finally, the private keys generated are password
protectedwith the password provided by the file key pass.txt.
The format of the file is the password repeated twice:
my password
my password
All private keys in the PKI tree are in PKCS #8 format will be
protected by the same password.

B o o o e
Do you want to use an existing CA key (y/n)?: n

O

congatec Copyright © 2013 congatec AG QMXbms10 68/81

Do you want to use Elliptic Curve Cryptography (y/n)?: n

Enter key length in bits for PKI tree: 2048

Enter PKI tree duration (years): 10

How many Super Root Keys should be generated? 4

Do you want the SRK certificates to have the CA flag set? (y/n)?: vy
#[...]

For more information, refer to NXP AN4581 Rev. 1, 10/2015.

2. Generate the SRK table and SRK hash table:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2
$ cd crts
$../linux64/srktool -h 4 -t SRK 1 2 3 4 table.bin -e SRK 1 2 3 4 fuse.bin -d sha256 -c ./SRK1l sha256 2048 65537 v3 ca crt.pem,./SRK2

sha256 2048 65537 v3 ca crt.pem,./SRK3 sha256 2048 65537 v3 ca crt.pem,./SRK4 sha256 2048 65537 v3 ca crt.pem -f 1

> Note

The SRK table will be part of the signature (binary CSF file)
» The padded binary CSF file will be appended to the (unsigned) u-boot image file

--> A signed u-boot image Is simply a concatenation of an unsigned u-boot image and the padded binary CSF file

» The SRK hash table contains the hash of the SRK table, which will be written to dedicated OTP registers (SRKO..SRK7, see section 8.3.2.1
"Fuse Overview")

8.3 Secure Boot: Restricted Execution (Signed Bootloader)
NXP's High Assurance Boot (HAB) implementation enables a secure boot chain at the i.MX6 CPU-family. This section's main subject is to show
the process of signing a given binary u-boot image file. Such a signed u-boot image file is suited for restricted execution. Restricted execution

means that the execution of arbitrary bootloader software is prevented.

Encrypted boot (encryption of a given u-boot image file) is not subject of this section.

8.3.1 Signing Bootloader Image (u-Boot 2016.01, non-SPL)
The following section describes how to sign a given binary u-boot image file useable for restricted execution (secure boot) at NXP's i.MX6 CPU-

family. There is a differentiation between the process of signing of normal u-boot image files (usually stored at SPI NOR-flash) and the signing
of so called mfg u-boot image files, which are used for bootloader updates using the NXP MFGTool2.

O

congatec Copyright © 2013 congatec AG QMXbms10 69/81

8.3.1.1 Preparation

1. Set up an image specific signing area:
$ mkdir /PATH/TO0/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area

2. Copy u-boot image file to sign to the previously created signing area:
$ cp -avr /PATH/TO/YOUR/UBOOT/SOURCES/qmx6 uboot/u-boot.imx ./u-boot.unsigned.imx

@ Note

Use separate signing areas for differing u-boot image files

3. Copy the cgtlVThelper.py script to the previously created signing area:

$ cp -avr /PATH/TO/YOUR/HAB/PLAYGROUND/cgtIVThelper/cgtIVThelper.py /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area/.

@ Note

Alternatively, add /PATH/TO/YOUR/HAB/PLAYGROUND/cgtIVThelper/ to your $PATH environment variable

8.3.1.2 Signing

This section describes the signing of u-boot image files - it is differentiated between normal u-boot images and special mfg u-boot images,
which are used for initial bootstrap in Serial Downloader Mode (MFGTool).

u-boot (non-SPL build)

1. Obtain the habblocks data from the original u-boot image file using cgtlVThelper.py (required later on):

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ python3 cgtIVThelper.py -f ./u-boot.unsigned.imx --get-habblocks
start-signing address : 0x177ff400

start-signing offset : 0x0

signed-data length 1 0x6ec00

2. Create textual CSF description file cgt-gmxé-umxé-sample.csf and fill it with the content shown below:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ nano cgt-gmx6-umx6-sample.csf

@ Note

The placeholders <start-signing address>, <start-signing offset> and <signed-data length> have to be changed to appropriate values
O obtained by using cgtlVThelper.py as shown in subitem 1.

congatec Copyright © 2013 congatec AG QMXbms10 70/81

O

congatec

cgt-gmx6-umx6-sample.csf
[Header]

Version = 4.1

Hash Algorithm = sha256
Engine = ANY

Engine Configuration = 0
Certificate Format = X509
Signature Format = CMS

[Install SRK]
File = "../crts/SRK 1 2 3 4 table.bin"

Source index = 0 # Index of the key location in the SRK table to be installed

[Install CSFK]
Key used to authenticate the CSF data
File = "../crts/CSF1 1 sha256 2048 65537 v3 usr crt.pem"

[Authenticate CSF]

[Unlock]
Engine = CAAM
Features = RNG

[Install Key]

Key slot index used to authenticate the key to be installed
Verification index = 0

Target key slot in HAB key store where key will be installed
Target Index = 2

Key to install

File= "../crts/IMGl 1 sha256 2048 65537 v3 usr crt.pem"

[Authenticate Datal]

Key slot index used to authenticate the image data

Verification index = 2

Address Offset Length

Blocks = <start-signing address> <start-signing offset> <signed-data length>
signing-area/u-boot.unsigned.imx"

. Generate the binary CSF file cgt-gmxé-umxé-sample.csf.bin:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64

Data File Path
"/PATH/T0O/YOUR/HAB/PLAYGROUND/cst-2.3.2/1linux64/uboot-

$./cst -i uboot-signing-area/cgt-gmx6-umx6-sample.csf -o uboot-signing-area/cgt-qmx6-umx6-sample.csf.bin

Copyright © 2013 congatec AG QMX6éms10

71/81

4. Add the required padding to the binary CSF file:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ objcopy -I binary -0 binary --pad-to 0x2000 --gap-fill=0x00 cgt-gmx6-umx6-sample.csf.bin cgt-qgmx6-umx6-sample.csf.bin.padded

For more information, refer to u-boot 2016.01 documentation:
https://git.congatec.com/arm/gmxé_uboot/blob/cgt_imx_v2016.01_1.0.0/doc/README.mxc_hab

5. Sign the u-boot image file:
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ cat u-boot.unsigned.imx cgt-gmx6-umx6-sample.csf.bin.padded > u-boot.signed.imx

Manufacturing u-boot

1. Clear the DCD pointer of a copy of the u-boot image file:
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ cp u-boot.mfg.unsigned.imx u-boot.mfg.unsigned.cleared-dcd.imx
$ python3 cgtIVThelper.py -f ./u-boot.mfg.unsigned.cleared-dcd.imx --clear-dcdptr

@ Note

If the MFGTool is used, it extracts the DCD from the binary mfg u-boot image file to initialize the external memory. The external memory must
not be initialized twice - that is the reason why the MFGTool modifies the u-boot binary internally, before it transfers the image to the target
i.MX6 system. The MFGTool clears the DCD pointer - that means, it sets the pointer to 00000000. Therefore, the creation of the signature
(binary CSF file) used for signing a mfg u-boot image file must reference a u-boot image file with cleared DCD pointer.

2 a) Obtain the habblocks data from the untouched u-boot image file using cgtlVThelper.py (required later on):

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ python3 cgtIVThelper.py -f ./u-boot.mfg.unsigned.imx --get-habblocks
start-signing address : 0x177ff400

start-signing offset : 0x0

signed-data length : Ox6ec00

@ Note

O

congatec

The habblocks data can also be obtained from the build process by simply passing V=1 to make.

2 b) Obtain the dcd-habblocks data from the untouched u-boot image file using cgtlVThelper.py (required later on):

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area

$ python3 cgtIVThelper.py -f ./u-boot.mfg.unsigned.imx --get-dcd-habblocks
DCD OFFSET | DCD LENGTH

0x0000002c 0x02f8

Copyright © 2013 congatec AG QMXbms10 72/81

2 c) Create the textual CSF description file cgt-gmxé-umx6-mfg-sample.csf and fill it with the content shown below:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ nano cgt-gmx6-umx6-mfg-sample.csf

@ Note

The placeholders <start-signing address>, <start-signing offset>, <signed-data length>, <dcd-offset> and <dcd-length> have to be
substituted with the appropriate values obtained by using cgtlVThelper.py as shown in the subitems 2 a) and 2 b)

cgt-gmx6-umx6-mfg-sample.csf
[Header]

Version = 4.1

Hash Algorithm = sha256

Engine = ANY

Engine Configuration = 0
Certificate Format = X509
Signature Format = CMS

[Install SRK]
File = "../crts/SRK 1 2 3 4 table.bin"

Source index = 0 # Index of the key location in the SRK table to be installed

[Install CSFK]
Key used to authenticate the CSF data
File = "../crts/CSF1 1 sha256 2048 65537 v3 usr crt.pem"

[Authenticate CSF]

[Unlock]
Engine = CAAM
Features = RNG

[Install Key]

Key slot index used to authenticate the key to be installed
Verification index = 0

Target key slot in HAB key store where key will be installed
Target Index = 2

Key to install

File= "../crts/IMGl 1 sha256 2048 65537 v3 usr crt.pem"

[Authenticate Datal]
Key slot index used to authenticate the image data

O

congatec Copyright © 2013 congatec AG QMXbms10 73/81

Verification index = 2

Address Offset Length Data File Path

Blocks = <start-signing address> <start-signing offset> <signed-data length> "/PATH/T0/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot -
signing-area/u-boot.mfg.unsigned.cleared-dcd.imx", \

0x00910000 <dcd-offset> <dcd-length> "/PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area/u-boot.mfg.unsigned.cleared-dcd.imx"

3. Generate the binary CSF file cgt-gmx6-umxé-mfg-sample.csf.bin:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1linux64
$./cst -i uboot-signing-area/cgt-gmx6-umx6-mfg-sample.csf -o uboot-signing-area/cgt-qmx6-umx6-mfg-sample.csf.bin

4. Add the required padding to the binary CSF file:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ objcopy -I binary -0 binary --pad-to 0x2000 --gap-fill=0x00 cgt-gmx6-umx6-mfg-sample.csf.bin cgt-gmx6-umx6-mfg-sample.csf.bin.padded

For more information, refer to u-boot 2016.01 Documentation:
https://git.congatec.com/arm/gmxé_uboot/blob/cgt_imx_v2016.01_1.0.0/doc/README.mxc_hab

5. Sign the mfg u-boot image file:
$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/1inux64/uboot-signing-area
$ cat u-boot.mfg.unsigned.imx cgt-gmx6-umx6-mfg-sample.csf.bin.padded > u-boot.mfg.signed.imx

@ Note

8.3.2

O

congatec

The u-boot image file with cleared dcd pointer is just used for the signing process. In order to get a working signed mfg u-boot image, the
untouched u-boot image file has to be concatenated with the padded binary CSF file. Do not use the u-boot image file with cleared DCD pointer
for concatenation. The MFGTool needs the DCD pointer to locate the DCD structure. The DCD pointer of the signed image will be cleared by the
MFGTool before the transfer begins. This is why the signature has to be created on basis of an image file with cleared DCD pointer.

For more information, refer to NXP AN4581 Rev. 1, 10/2015, pp.18sgq.

SOC-Configuration

The HAB configuration requires burning some One Time Programmable (OTP) registers (fuses).

That kind of register can be burned by using:
e u-boot's fuse command. For more information, refer to u-boot 2016.01 Documentation:

- https://git.congatec.com/arm/gmxé_uboot/blob/cgt_imx_v2016.01_1.0.0/doc/README .fuse

Copyright © 2013 congatec AG QMXbms10 74/81

- https://git.congatec.com/arm/gmxé_uboot/blob/cgt_imx_v2016.01_1.0.0/doc/README.mxc_ocotp

« MFGTool/Linux pseudo filesystem. For more information, refer to i.MX 6 Linux® High Assurance Boot (HAB) User's Guide, Document
Number: IMX6HABUG, Rev. L3.14.28_1.0.0-ga, 04/2015, p.9.

« fsdpéutil, etc.

In the following example, we use the fuse command from the u-boot command prompt.
Command usage information:
fuse prog [-y] <bank> <word> <value>
+ [-y] write without further enquiry (optional)
» <bank> and <word> refer to the addresses/offsets given by the fusemap
« <value> value to write to the OTP register at bank <bank> and word <word>

For more information, refer to u-boot 2016.01 Documentation:

+ https://git.congatec.com/arm/gmxé_uboot/blob/cgt_imx_v2016.01_1.0.0/doc/README .fuse]
 https://git.congatec.com/arm/gmxé_uboot/blob/cgt_imx_v2016.01_1.0.0/doc/README.mxc_ocotp

8.3.2.1 Fuse Overview

OTP Fuse Fusemap Offset / Bit |Bank |Word | Write-Command
SEC_CONFIG 0x460[1] 0 6 fuse prog 0 6 0x2

DIR_BT_DIS 0x460[3] 0 6 fuse prog 0 6 0x8

SRK_LOCK 0x400[14] 0 0 fuse prog 0 0 0x4000

SRKO 0x580 3 0 depends on your personal PKI
SRK1 0x590 3 1 depends on your personal PKI
SRK2 0x5A0 3 2 depends on your personal PKI
SRK3 0x5B0 3 3 depends on your personal PKI
SRK4 0x5C0 3 4 depends on your personal PKI
SRK5 0x5D0 3 5 depends on your personal PKI
SRK6 Ox5EQ 3 6 depends on your personal PKI
SRK7 0x5F0 3 7 depends on your personal PKI|

For more information, refer to i.MX é6Dual/6Quad Applications Processor Reference Manual, Document Number: IMX6DQRM, Rev 2, 06/2014,
pp.335sqg.

congatec Copyright © 2013 congatec AG QMXbms10 75/81

8.3.2.2 Burning SRK Hashes Into SRK OTP Registers
Refer to the creation of the SRK table and the SRK hash table as shown in section 8.3.2.1 "Fuse Overview".

1. Extract the SRK hashes to write to the SRK OTP fuses from the SRK hash table:

$ cd /PATH/TO/YOUR/HAB/PLAYGROUND/cst-2.3.2/crts
$ hexdump -e '/4 "Ox"' -e '/4 "%X""\n"' SRK 1 2 3 4 fuse.bin
0x53C78AB7
0x96DEICFD
0x50EF24F6
0x409FCB10
0x29ED70C7
OxE9864F28
0x3FBB5AAL
0XC50B3F39

For more information, refer to NXP AN4581 Rev. 1, 10/2015.
2. Burn the SRK hash table to the dedicated SRK OTP fuses:

Caution

Do not write the SRK hash values from this example to the OTP registers or the module will become useless. Only write the SRK hashes
extracted from your own SRK table.

In order to burn the SRK fuses, invoke the fuse command from the u-boot command prompt as follows:

> fuse prog -y 3 0 0x53C78AB7
> fuse prog -y 3 1 0x96DE9CFD
> fuse prog -y 3 2 Ox50EF24F6
> fuse prog -y 3 3 0x409FCB10
> fuse prog -y 3 4 0x29ED70C7
> fuse prog -y 3 5 0xE9864F28
> fuse prog -y 3 6 0x3FBB5AAl
> fuse prog -y 3 7 0xC50B3F39

For more information, refer to NXP AN4581 Rev. 1, 10/2015.

O

congatec Copyright © 2013 congatec AG QMXbms10 76/81

8.3.2.3

Verifying the Signed u-boot Image File (hab_status)

> hab_status
Secure boot enabled

HAB Configuration: Oxcc, HAB State: 0x99
No HAB Events Found!

>

ACaution

8.3.24

O

congatec

If hab_status throws HAB events, the u-boot image file is probably not signed correctly.

1. Go back and double check all performed steps:
— verify the signed u-boot image
— verify the burned SRK hashes

2. Do NOT proceed as long as hab_status throws HAB events.

Finalizing Lock
1. Burn the SRK_LOCK bit (locking SRK OTP fuses):

In order to burn the SRK_LOCK bit, execute the following command at the u-boot command prompt:
> fuse prog -y 0 0 0x4000

2. Burn the DR_BT_DIS bit:

In order to burn the DR_BT_DIS bit execute the following command at the u-boot command prompt:
> fuse prog -y 0 6 0x8

3. Burn the SEC_CONFIG bit (enabling secure boot / preventing execution of unsigned bootloader images):

In order to burn the SEC_CONFIG bit execute the following command at the u-boot command prompt:
> fuse prog -y 0 6 0x8

Copyright © 2013 congatec AG QMX6éms10

77/81

ACaution

Verify the signed u-boot image file by using hab_status before burning SEC_CONFIG, see section 8.3.2.3 "Verifying the Signed u-boot Image
File (hab_status)".

If SEC_CONFIG is set:

 the part will only execute properly signed u-boot image files
+ the default MFGTool and MFG Profiles will not work anymore

« MFGTool usage demands the creation of a special signed mfg u-boot image, see section 8.3.1 "Signing the Bootloader Image (u-boot
2016.01, non-SPL)".

Burning SEC_CONFIG is always the last step in enabling secure boot on i.MXé devices:

> fuse prog -y 0 6 0x2

4. After reboot, check the hab_status again:
> hab_status

Secure boot enabled

HAB Configuration: Oxcc, HAB State: 0x99
No HAB Events Found!

>

8.3.3 MFGTool and Locked Modules (SEC_CONFIG burned)

1. Download the latest version of the MFGTool and perform an update to the latest MFG Profiles.
2. Create a personal copy of the matching binary mfg u-boot image file from MFGTool2\Profiles\<sMODULE_TYPE>\OS Firmware\mfg
3. Sign the selected binary mfg u-boot image file as described in 8.3.1.2 "Signing (Manufacturing u-boot)"

4. Append the "-signed" string to the signed mfg u-boot version string (filename) as exemplarily shown below:
$ mv /YOUR/PERSONAL/COPY/OF/u-boot mfg 1024 64 528 mu201601r003.imx /YOUR/PERSONAL/COPY/OF/u-boot mfg 1024 64 528 mu201601r003-signed.imx

5. Store a copy of u-boot_mfg_1024_64_528__mu201601r003-signed.imx at MFGTool2\Profiles\<MODULE_TYPE>\OS Firmware\mfg

O

congatec Copyright © 2013 congatec AG QMXbms10 78/81

6. Adapt the MFGTool2\cfg.ini configuration file as exemplarily shown below:
;5 cfg.ini
A R

;QMX6_MFG_UBOOT VER = mu201601r003
QMX6 MFG UBOOT VER = mu201601r003-signed

O

congatec Copyright © 2013 congatec AG

QMXbms10 79/81

9 Sources of Information

For detailed information about the i.MXé processor and the available software board packages/tools, consult the documents listed below.
These documents are available at http://www.nxp.com. A registered account is required to download some of the files.

+ i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors (IMXDQAEC.pdf)
« i.MX 6Dual/6Quad Applications Processors for Consumer Products (IMXDQCEC.pdf)

» i.MX 6Dual/6Quad Applications Processors for Industrial Products (IMXDQIEC.pdf)

« i.MX 6Solo/6Duallite Automotive and Infotainment Applications Processors (IMX6SDLAEC.pdf)
+ i.MX 6Solo/6Duallite Applications Processors for Consumer Products(IMX6SDLCEC.pdf)

» i.MX 6Solo/6DualLite Applications Processors for Industrial Products(IMX6SDLIEC.pdf)

« i.MX 6Dual/6Quad Applications Processors Reference Manual (IMX6DQRM.pdf)

» i.MX 6Solo/6Duallite Applications Processors Reference Manual (IMX6SDLRM.pdf)

» Chip Errata for the i.MX 6Dual/6Quad (IMX6DQCE.pdf)

+ Chip Errata for the i.MX 6Solo/6DualLite (IMX6SDLCE.pdf)

» i.MX6 datasheets that covers all features and electrical characteristics of the processor

« NXP community at https://community.nxp.com

O

congatec Copyright © 2013 congatec AG QMXbms10 80/81

9.1

O

congatec

Industry Specification

The list below provides links to industry specifications that apply to congatec AG modules.

Specification

Link

Qseven® Specification

http://www.gseven-standard.org/

Qseven® Design Guide

http://www.gseven-standard.org/

Low Pin Count Interface Specification, Revision 1.0 (LPC)

http://developer.intel.com/design/chipsets/industry/lpc.htm

Universal Serial Bus (USB) Specification, Revision 2.0

http://www.usb.org/home

Serial ATA Specification, Revision 1.0a

http://www.serialata.org

PCI Express Base Specification, Revision 2.0

http://www.pcisig.com/specifications

NXP website

http://www.nxp.com

Copyright © 2013 congatec AG

QMX6éms10

81/81

http://www.qseven-standard.org/
http://www.qseven-standard.org/
http://developer.intel.com/design/chipsets/industry/lpc.htm
http://www.usb.org/home
http://www.serialata.org/
http://www.pcisig.com/specifications
http://www.freescale.com

	1	Introduction
	2	Setting Up the Host System
	2.1	Overview
	2.2	Requirements
	2.3	Setting Up the Standalone Cross-Development Environment
	2.4	Serial Port Terminal (Serial Console)
	2.4.1	Setting up the Hardware
	2.4.2	Setting Up the Software

	2.5	Updating the Bootloader (NXP MFGTool / cgtMFGui)
	2.5.1	Use Cases
	2.5.2	Download, Installation and Update Procedure (NXP MFGTool and cgtMFGui)
	2.5.3	Configuring the NXP MFGTool
	2.5.3.1	GUI Based Configuration (cgtMFGui)
	2.5.3.2	Manual Configuration (cfg.ini)

	2.5.4	Usage

	2.6	BSP-Setup

	3	Yocto Based Linux BSP
	3.1	Setting Up the BSP
	3.2	Building a Root Filesystem Image
	3.3	Deploying the Image
	3.3.1	Network Boot
	3.3.2	Micro-SD Card
	3.3.3	eMMC

	4	Android
	4.1	Setting Up the Development System
	4.2	Preparation: Required Sources and Files
	4.3	Building the Image
	4.4	Deploying the Image
	4.4.1	Micro-SD Card
	4.4.2	SD Card
	4.4.3	eMMC

	4.5	Updating Procedure: Sources

	5	Boot Process
	5.1	Boot fuses
	5.2	IOMUX Configuration

	6	Bootloader (u-boot)
	6.1	u-boot 2009.08
	6.1.1	Environment Variables
	6.1.2	Version Specific Hints
	6.1.3	Special Functionality
	6.1.4	Bootloader Scripts
	6.1.5	Runtime Configuration
	6.1.6	Restoring the Default Environment
	6.1.7	Selecting the Boot Device
	6.1.7.1	Network Boot
	6.1.7.2	eMMC
	6.1.7.3	SATA Device

	6.1.8	Boot Loader Types
	6.1.9	Build Process

	6.2	u-boot 2013.04
	6.2.1	Environment Variables
	6.2.2	Version Specific Hints
	6.2.3	Special Functionality
	6.2.4	Runtime Configuration
	6.2.5	Selecting the Boot Device
	6.2.5.1	Network Boot
	6.2.5.2	Micro-SD Card
	6.2.5.3	eMMC
	6.2.5.4	SD Card
	6.2.5.5	SATA Device
	6.2.5.6	USB Device

	6.2.6	Configuring the Video Devices
	6.2.7	Boot Loader Types
	6.2.8	Build Process

	6.3	u-boot 2016.01
	6.3.1	Environment Variables
	6.3.2	Version Specific Hints
	6.3.3	Special Functionality
	6.3.4	Runtime Configuration
	6.3.5	Selecting the Boot Device
	6.3.5.1	Network Boot
	6.3.5.2	Micro-SD Card
	6.3.5.3	eMMC
	6.3.5.4	SD Card
	6.3.5.5	SATA Device
	6.3.5.6	USB Device

	6.3.6	Configuring the Video Devices
	6.3.7	Boot Loader Types
	6.3.8	Build Process

	7	Falcon Mode (u-boot)
	7.1	Overview
	7.2	Requirements
	7.3	Setting Up the Bootloader
	7.3.1	Downloading Sources
	7.3.2	Configuration
	7.3.3	Build Falcon Mode Enabled Bootloader
	7.3.4	Update Target System

	7.4	Setting Up Boot Device
	7.4.1	Use-Case I: Boot Kernel Image Directly (Quickboot)
	7.4.1.1	Setting Up Partition/Filesystem
	7.4.1.2	Setting Up Raw MMC Device

	7.4.2	Use-Case II: Load Bootloader Image (u-boot.img) from MMC Device

	8	High Assurance Boot (HAB)
	8.1	Overview
	8.2	Requirements
	8.2.1	Download/Setup
	8.2.2	Building u-boot with HAB Support Enabled
	8.2.3	Setting Up Public Key Infrastructure (PKI)

	8.3	Secure Boot: Restricted Execution (Signed Bootloader)
	8.3.1	Signing Bootloader Image (u-Boot 2016.01, non-SPL)
	8.3.1.1	Preparation
	8.3.1.2	Signing

	8.3.2	SOC-Configuration
	8.3.2.1	Fuse Overview
	8.3.2.2	Burning SRK Hashes Into SRK OTP Registers
	8.3.2.3	Verifying the Signed u-boot Image File (hab_status)
	8.3.2.4	Finalizing Lock

	8.3.3	MFGTool and Locked Modules (SEC_CONFIG burned)

	9	Sources of Information
	9.1	Industry Specification

