

congatec Application Note

Affected Products	All COM Express® Products	
Subject	PCle® 4.0 Design Considerations for COM Express® Carrier Boards	
Confidential/Public	idential/Public Public	
Author	KOL	

Revision History

Revision	Date (yyyy-mm-dd)	Author	Changes
1.0	2023-02-10	KOL	Initial Release

Preface

This application note provides recommendations for COM Express[®] Computer-On-Module (COM) carrier board designs to comply with PCIe[®] 4.0 requirements.

Disclaimer

The information contained within this Application Note, including but not limited to any product specification, is subject to change without notice.

congatec GmbH provides no warranty with regard to this Application Note or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec GmbH assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the Application Note. In no event shall congatec GmbH be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this Application Note or any other information contained herein or the use thereof.

Intended Audience

This Application Note is intended for technically qualified personnel. It is not intended for general audiences.

Electrostatic Sensitive Device

All congatec GmbH products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle a congatec GmbH product except at an electrostatic-free workstation. Additionally, do not ship or store congatec GmbH products near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer's packaging. Be aware that failure to comply with these guidelines will void the congatec GmbH Limited Warranty.

Technical Support

congatec GmbH technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

Symbols

The following are symbols used in this application note.

Notes call attention to important information that should be observed.

Cautions warn the user about how to prevent damage to hardware or loss of data.

Copyright Notice

Copyright [©] 2023, congatec GmbH. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec GmbH.

congatec GmbH has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec GmbH, our products, or our website.

Terminology

Term	Description
PCIe®	Peripheral Component Interconnect Express®
Тх	Transmit Differential Pair
Rx	Receive Differential Pair
СОМ	Computer-On-Module
SMD	Surface Mount Device
AC	Alternating Current
AIC	Add-In Card
IL	Insertion Loss
N/FEXT	Near/Far-End Crosstalk

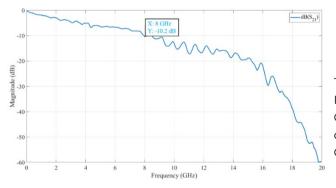
1 Introduction

PCle[®] 4.0 poses increasingly demanding design and layout requirements. This application note provides recommendations that are crucial—but not always sufficient—for COM Express[®] carrier board designs to comply with these requirements.

As additional considerations may be required, congatec highly recommends reading the following documents:

- PCle[®] 4.0 specification (PCI-SIG[®])
- COM Express[®] specification (Rev. 3.1 added information for PCIe[®] 4.0)
- COM Express[®] carrier board design guide

Following the recommendations in this application note is not always sufficient to comply with all the PCIe[®] 4.0 requirements.


2 **Recommendations**

2.1 Device-Up Systems

The table below provides recommendations for COM Express[®] device-up systems to comply with PCIe[®] 4.0 requirements:

Parameter	Recommendation	
Trace length for COM	4.0 Inches	
Express [®] carrier board	Defined for material with dielectric constant ≈3.57 and dissipation factor ≤0.046	
	Max. trace length strongly depends on dielectric loss tangent of PCB material	
AC coupling capacitors	0201 capacitors preferred and GND cutouts underneath are recommended	
	AC coupling capacitors are placed on the module for PCIe Tx	
	AC coupling capacitors are required for PCIe Rx for device down topology	
Max. Intra-Pair Skew	Max. 5 mils	
Max. Inter-Pair Skew	No electrical requirements	
	Should not exceed 3 inches to minimize latency	
Differential Impedance	85 Ω ± 10 %	
	Impedance-controlled manufacturing is recommended	
Microstrip/Stripline	Microstrip only for short routing if vias can be avoided	
	Stripline preferred	
Via Usage	2 vias with maximum stub length of 30 mil and removal of unused pads	
Via anti-pad	Single oval anti-pad for differential pair	
	Via optimization to match impedance and reduce loss is recommended	
Current Return Via	One for each signal	
Reference plane	Continuous ground	
PCIe [®] Connector	SMD connector Foxconn 2EF5827-DA9DB-8H or Amphenol 10146067-123Y0LF	
COM Express [®] Connector ept Colibri Plug 401-55103-51		

Based on the recommendations above, congatec measured an insertion loss of - 10.2 dB @ 8 GHz for one of its device-up systems:

This measurement was performed with a VNA. It shows the IL of the channel containing the COM Express® connector, the PCB trace routing of a proprietary congatec test card, the PCIe® Connector, and the PCI-SIG® AIC test fixture.

Figure 1 Insertion Loss Diagram

De Note

Perform a signal integrity analysis to ensure proper functionality of the customer system.

Copyright ©2023 congatec GmbH AN53 PCle[®] 4.0 Design Considerations Printed versions of this document are not under revision control

2.2 Crosstalk

To prevent problems due to crosstalk:

- Consider interleaved routing when FEXT is more significant than NEXT.
- Consider non-interleaved routing when NEXT is more significant than FEXT.

Alternatively, place ground or low speed signals to both sides of a high-speed differential pair as shown in the table below.

Pin #	Row A	Row B
57	GND	GPO2
58 59	PCIE_TX3+ PCIE_TX3-	PCIE_RX3+ PCIE_RX3-
60	GND	GND
61 62	PCIE_TX2+ PCIE_TX2-	PCIE_RX2+ PCIE_RX2-
63	GPI1	GPO3
64 65	PCIE_TX1+ PCIE_TX1-	PCIE_RX1+ PCIE_RX1-
66	GND	WAKEO#
68 69	PCIE_TX0+ PCIE_TX0-	PCIE_RX0+ PCIE_RX0-
70	GND	GND

The alternative method cannot completely prevent crosstalk at higher clock rates like PCle[®] 4.0. It is possible for the high-speed signals to cross-couple via the sideband signal onto the adjacent high-speed line pair. This effect can be counteracted by a capacitor to GND to all sideband signals that are placed between the PCle[®] signals.

2.3 Length of Differential Pairs

To compensate for a mismatch between the positive and negative lines of a pair, route the lines in the form of serpentines. The recommended parameters for the serpentines are included in the figure and note below:

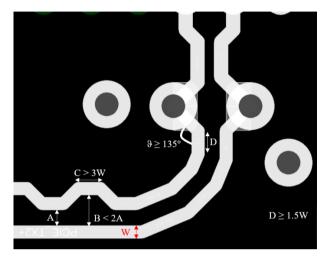


Figure 2 Length-Matching of Differential Pairs

א <⊑

Note

Angles of 90° should be avoided and reduced to a maximum of 45° to ensure proper signal routing. The length C of the serpentines should always be three times the width of the line and distance B should be greater than twice the differential distance of the line pair.

2.4 Fiber Weave Effect

When implementing high-speed lanes into your system, the fiber weave effect must be considered. This effect describes the occurrence of a time delay in the signal between two or more transmission lines of equal length due to the glass fiber reinforced dielectric substrate.

A glass fabric structure is illustrated in the figure below:

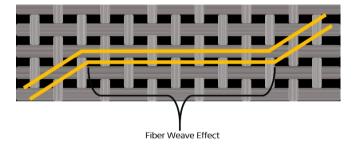


Figure 3 Glass Weave Skew (GWS)

If a line proceeds for a certain length on the yarn of the glass fabric, the propagation velocity differs from the adjacent line of the same length, which extends mostly over the epoxy resin. Differences in propagation velocity can cause a timing skew of up to 7ps.

The figure below shows how to significantly reduce the timing skew:

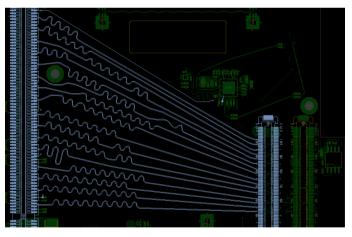


Figure 4 Layout Consideration

The differential pairs are implemented with a slight slope on the PCB. This averages the changes in the material and reduces the variation in the signal speed to a minimum.