

congatec Application Note

Affected Products	Type 7 Products
Subject	Type 7 LAN LED Design Notes
Confidential/Public	Public
Author	GMX

Revision History

1.0 2019.09.12 GMX Initial Revision	Revision	Date (yyyy-mm-dd)	Author	Changes
	1.0	2019.09.12	GMX	Initial Revision

Preface

This Application Note explains the fundamentals of the COM-Express Type 7 related 10GbE LAN LED behavior.

In addition, we show our implementation for the 10GbE LAN LED related circuits with our evaluation board schematics and give design notes on certain circuits.

Disclaimer

The information contained within this Application Note, including but not limited to any product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this Application Note or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the Application Note. In no event shall congatec AG be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this Application Note or any other information contained herein or the use thereof.

Intended Audience

This Application Note is intended for technically qualified personnel. It is not intended for general audiences.

Electrostatic Sensitive Device

All congatec AG products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle a congatec AG product except at an electrostatic-free workstation. Additionally, do not ship or store congatec AG products near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer's packaging. Be aware that failure to comply with these guidelines will void the congatec AG Limited Warranty.

Technical Support

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

Symbols

The following are symbols used in this application note.

Notes call attention to important information that should be observed.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Warning

Warnings indicate that personal injury can occur if the information is not observed.

Copyright Notice

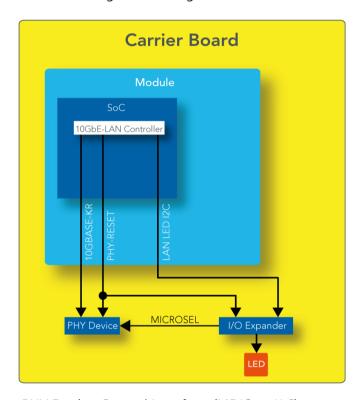
Copyright © 2019, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.

Terminology


Term	Description
SoC	System-on-a-Chip
PHY	Physical Layer Transceiver
LED	Light-emitting Diode
10GbE	10-Gigabit-Ethernet
LAN	Local Area Network

1 Introduction

This AN explains how to implement 10GbE LAN LEDs on a carrier board for the conga-B7XD and conga-B7AC modules on the example of the conga-X7/EVAL evaluation carrier board. The full schematic of the conga-X7/EVAL is available on www.congatec.com.

The block diagram below gives an overview of the implementation with one PHY device:

PHY Device Control Interface (MDIO or I2C)

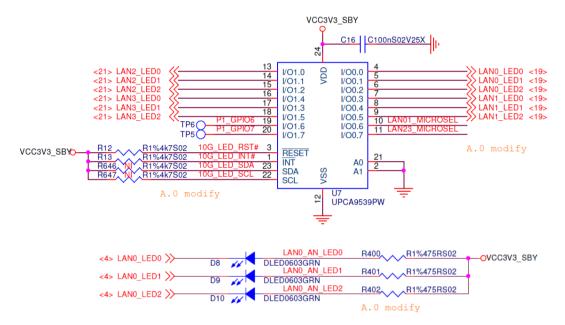
- 1) The 10GbE-LAN controller negotiates the required control interface with the PHY device via the 10GBASE-KR interface.
- 2) The 10GbE-LAN controller communicates the required control interface to the I/O expander via the two-wire LAN LED I2C bus.
- 3) The I/O expander selects the control interface by setting the MICROSEL signals. The MICROSEL signals are connected to the PHY device via bootstrapping. For more information, see section 2.1.3.

LED Behavior

- 1) The 10GbE-LAN controller communicates the required LED behavior to the I/O expander via the two-wire LAN LED I2C bus. For more information, see section 2.1.1.
- 2) The I/O expander controls the behavior of the connected LED. For more information, see section 2.1.

PHY-RESET

 The 10GbE-LAN controller resets the PHY device and I/O expander via the PHY-RESET signal. For more information, see section 0.2.1.2



2 Design Notes

2.1 I/O Expander

The COM Express Module Base Specification, Revision 3.0, section 4.3.4, specifies that the carrier board should use a PCA9539 or compatible I2C I/O expander. Furthermore, the specification allows for up to three LEDs per 10GbE-LAN controller.

The schematic below shows how the I/O expander and three LEDs are implemented on the conga-X7/EVAL:

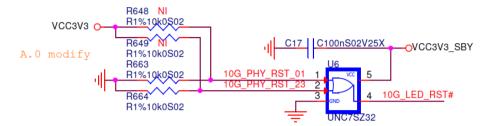
The table below describes the relevant signals of the schematic:

Signal	Description
10G_LED_SDA	This signal is routed directly from the COM Express connector (Pin 36, Row C and Pin 37, Row C respectively) to the PCA9539. The signal does not require a pull-up resistor on the
10G_LED_SCL	carrier board because it is already pulled up on congatec modules ("NI" for not installed).
LANx_LEDx	This signal is transmitted by the I/O expander to an LED circuit. The signal is active low and must be connected to the cathode of the LED via an appropriate resistor. Note: The Intel 10GbE-LAN controller on conga-B7XD and conga-B7AC only supports LANx_LED0 and LANx_LED1 signals as specified in the Intel Ethernet Controller Specification. Therefore, LANx_LED2 signals can be left unconnected.
P1_GPIO6	This signal is not specified and can be left unconnected. In this schematic, this signal is
P1_GPIO7	used as a test point.
10G_LED_INT#	This signal is transmitted by the I/O expander. It indicates changes in potentially input controlled ports by the I/O expander. This output can remain pulled up to 3.3V because all ports are configured as outputs.

2.1.1 I2C Data Mapping

The table below gives an overview of the I2C data mapping to the I/O expander of the COM Express Module Base Specification, the conga-B7XD, and conga-B7AC:

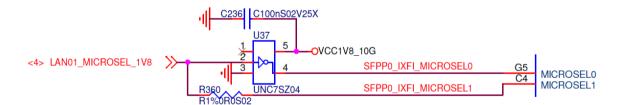
Port Pin	Signal Name	COMe 3.0	conga-B7XD	conga-B7AC
		defined function	function if different	function if different
P0_0	10G_KR_LED0_0#	PHYO, LED 0 – Status/ACT	PHY 0, LED 0 - on if Link-Up indicated	PHY 0, LED 0 - on if Link-Up indicated
P0_1	10G_KR_LED0_1#	PHY0, LED 1 – Link Speed Max	PHY 0, LED 1 - blinking if 10Gb/s Link indicated	PHY 0, LED 1 – On if Link-Up is indicated, blinking if there is packet activity
P0_2	10G_KR_LED0_2#	PHY 0, LED 2 – Link Speed	Unused	Unused
P0_3	10G_KR_LED1_0#	PHY1, LED 0 – Status/ACT	PHY 1, LED 0 - on if Link-Up indicated	PHY 1, LED 0 - on if Link-Up indicated
P0_4	10G_KR_LED1_1#	PHY1, LED 1 – Link Speed Max	PHY 1, LED 1 - blinking if 10Gb/s Link indicated	PHY 1, LED 1 – On if Link-Up is indicated, blinking if there is packet activity
P0_5	10G_KR_LED1_2#	PHY 1, LED 2 – Link Speed	Unused	Unused
P0_6	10G_KR_STRAP01	PHY 0-1 Strap		
P0_7	10g_KR_STRAP23	PHY 2-3 Strap	Unused	
P1_0	10G_KR_LED0_0#	PHY2, LED 0 – Status/ACT	N/A	PHY 2, LED 0 - on if Link-Up indicated
P1_1	10G_KR_LED0_1#	PHY2, LED 1 – Link Speed Max	N/A	PHY 2, LED 1 – On if Link-Up is indicated, blinking if there is packet activity
P1_2	10G_KR_LED0_2#	PHY 2, LED 2 – Link Speed	N/A	Unused
P1_3	10G_KR_LED1_0#	PHY3, LED 0 – Status/ACT	N/A	PHY 3, LED 0 - on if Link-Up indicated
P1_4	10G_KR_LED1_1#	PHY3, LED 1 – Link Speed Max	N/A	PHY 3, LED 1 – On if Link-Up is indicated, blinking if there is packet activity
P1_5	10G_KR_LED1_2#	PHY 3, LED 2 – Link Speed	N/A	Unused
P1_6	Reserved	TBD		
P1_7	Reserved	TBD		



The signal name can be misleading as it does not always reflect the signal function of a particular module. The signal names are defined in the COM Express Module Base Specification but the LED signal functions are defined by Intel for their PHY devices and are therefore reflected on the conga-B7XD and conga-B7AC.

2.1.2 PHY-RESET

The 10GbE-LAN controller resets the I/O expander via the 10G_PHY_RST_xx signals. The schematic below shows how they are implemented on the conga-X7/EVAL:


The table below describes the relevant signals of the schematic:

Signal	Description
10G_PHY_RST_01	The I/O expander provides LED signals for up to four 10GbE-LAN controllers. Therefore, a
10G_PHY_RST_23	logic OR chip is required for both reset signals. This is achieved by the NC7SZ32. Note: Here, the signals are pulled-down. Initially, this keeps the devices in reset.

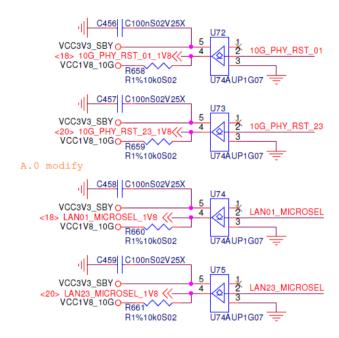
2.1.3 MICROSEL

Some PHY devices support MDIO and I2C interfaces. To select either interface, the I/O expander must set the LANxx_MICROSEL signals for the PHY device via bootstrapping

The schematic below shows how they are implemented on the conga-X7/EVAL:

The table below describes the relevant signal of the schematic:

Signal	Description
LAN01_MICROSEL_1V8	This signal is transmitted by the I/O expander to the PHY device. The signal is inverted by the NC7SZ04 to set the Inphi CS4227 PHY device control interface to either MDIO or I2C.


To select the PHY device control interface via bootstrapping, the COM Express pins 10G_PHY_CAP_01 and 10G_PHY_CAP_23 must be connected to ground. If these two pins are unconnected, the PHY device control interface is set to MDIO and it is not possible to select the interface via bootstrapping. For more information, refer to the COM Express Module Base Specification, Revision 3.0, section 4.3.4.

2.2 Level-Shifters for the Inphi CS4227 PHY Device

The Inphi CS4227 PHY device operates at 1.8V signal levels. Therefore, several level-shifters must be implemented to translate the 3.3V PHY-RESET and MICROSEL signals transmitted by the 10GbE-LAN controller and I/O expander respectively to the PHY device.

The schematic below shows how they are implemented on the conga-X7/EVAL:

The table below describes the relevant signals of the schematic:

Signal	Description	
10G_PHY_RST_01_1V8	This signal is transmitted by the 10GbE-LAN controller and received by the PHY	
10G_PHY_RST_23_1V8	device. This signal is translated from 3.3V to 1.8V by the U74AUP1G07 level-shifter.	
LAN01_MICROSEL_1V8	This signal is transmitted by the I/O expander and received by the PHY device. This	
LAN23_MICROSEL_1V8	signal is translated from 3.3V to 1.8V by the U74AUP1G07 level-shifter.	