Affected Products
All products featuring PCIe root ports

Subject
PCIe Link Configuration at Runtime

Confidential/Public
Public

Author
CJR
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date (yyy-mm-dd)</th>
<th>Author</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2019-07-04</td>
<td>CJR</td>
<td>Initial release of document</td>
</tr>
<tr>
<td>1.1</td>
<td>2019-07-23</td>
<td>CJR</td>
<td>Added Link Capability register description</td>
</tr>
</tbody>
</table>
Preface

PCI Express links are trained during BIOS Power On Self-Test. However, a PCI Express link might not be trained correctly (either not at all or in the wrong link width or speed). This application note explains how to retrain or disable and re-enable the link at runtime. This can be helpful to find the root cause of the PCI Express link problem.

Disclaimer

The information contained within this Application Note, including but not limited to any product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this Application Note or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the Application Note. In no event shall congatec AG be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this Application Note or any other information contained herein or the use thereof.

Intended Audience

This Application Note is intended for technically qualified personnel. It is not intended for general audiences.

Electrostatic Sensitive Device

All congatec AG products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle a congatec AG product except at an electrostatic-free workstation. Additionally, do not ship or store congatec AG products near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer’s packaging. Be aware that failure to comply with these guidelines will void the congatec AG Limited Warranty.

Technical Support

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com
Symbols

The following are symbols used in this application note.

Note

Notes call attention to important information that should be observed.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Warning

Warnings indicate that personal injury can occur if the information is not observed.

Copyright Notice

Copyright © 2019, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied “as-is”.

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user’s guide or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.
1 Introduction

This application note explains how to configure a PCI Express (PCIe) link during runtime. This is especially helpful if a PCIe link is trained incorrectly during the Power On Self Test (POST). A PCIe link could be trained with the wrong link width, speed or not trained at all.

2 Prerequisites

PCI Config Space registers can be modified with several tools. Use PCI.EXE under DOS if possible. Contact your congatec FAE if you do not have access to this DOS tool. In Windows, RWEverything (www.rweverything.com) can be used.

A DOS bootable USB stick with PCI.exe is required for the purpose of this application note. Follow the steps described in the CTN 20132507 001 “How to create a DOS bootable USB stick and use PCI.EXE” to create it. This CTN is available in the restricted area of the congatec website www.congatec.com.

It is recommended to perform the manual link configuration steps in a pre-OS environment like DOS or the EFI shell. This ensures that other software (OS or device driver) does not access these registers.

If the PCIe link is not trained at all during POST, enable hot-plug functionality for the PCIe root port in BIOS Setup. This prevents the BIOS from disabling the root port. If the root port is disabled, it is not possible to retry link training at runtime.

3 Important PCI Config Space Registers

Link training can be initiated with the help of the Link Control Register. The current link status is shown in the Link Status Register. The Link Capabilities Register identifies PCI Express link specific capabilities of the device. All three registers are in the PCI configuration space of the PCI Express device and part of the PCI Express Capability structure.

The structure can be located by following the Capability Pointer in PCI configuration register offset 34h. This register points to a linked list of capabilities implemented by a PCI function, in this case a PCI Express root port.

The first byte the pointer points to is the capability ID, the byte following the capability ID is the pointer to the next capability structure. Follow the linked list until you find the PCI Express Capability structure with the ID of 10h. See example in section 3.4 “Finding the PCI Express Capability Structure”.

3.1 Link Control Register (Offset 10h)

The Link Control Register controls PCI Express Link specific parameters. Figure 1 below details allocation of register fields in the Link Control register.

![Link Control Register Bit Description](image)

3.2 Link Status Register (Offset 12h)

The Link Status Register provides information about PCI Express specific parameters. Figure 2 below details allocation of register fields in the Link Status register.

![Link Status Register Bit Description](image)
3.3 Link Capabilities Register (Offset 0Ch)

The Link Capabilities Register identifies PCI Express link specific capabilities. Figure 3 below details allocation of register fields in the Link Capabilities register.

When debugging PCI Express link problems, the Max Link Speed and Maximum Link Width indicated in this register are of special interest.

The Max Link Speed [bits 3:0] indicates the maximum link speed this device can support. Although the encoding of the bit value changed in a newer version of the PCI Express specification (it specifies a bit location in the Supported Link Speeds Vector in the Link Capabilities 2 register), the bit value can still be interpreted as the supported link speed:

- **Gen1**: 0001b
- **Gen2**: 0010b
- **Gen3**: 0011b

The Maximum Link Width [bits 9:4] indicates the maximum link width (number of lanes) this device can support:

- **x1**: 000001b
- **x2**: 000010b
- **x4**: 000100b
- **x8**: 001000b
- **x16**: 010000b
- **x32**: 100000b

The maximum supported link speed and width of the two link partners (usually a root port and an endpoint) is important to judge whether the link is trained properly. A link should train in the highest common speed and width supported by both link partners.

For example: If the PCIe root port supports Gen3 x8 and the endpoint supports Gen2 x4, the link should train in Gen2 x4. This is indicated in the Link Status Registers **Negotiated Link Width** and **Current Link Speed** fields. Compare the status information from the Link Status Register with the capabilities of the two link devices.
3.4 Finding the PCI Express Capability Structure

Start at the pointer in register offset 34h and follow the linked list until you reach the capability ID 10h. The two examples below show PCI Express root ports of an Intel PCH and a System Agent (PEG Port).

Figure 3: PCI Config Space of Intel PCH PCI Express Root Port

Figure 4: PCI Config Space of Intel PEG PCI Express Root Port
3.5 Disabling / Enabling a PCI Express Link

1. Navigate (F1 in PCLEXE) to the PCI Express root port your device is connected to.
2. Find the Link Control Register as explained in section 3.3 “Finding the PCI Express Capability Structure” above.

Note

Bit 6 (common clock configuration) of the Link Control Register must be set if bit 12 (slot clock configuration) of the Link Status Register is set. This is the case for most PCI Express links since the downstream device usually uses the same reference clock as the root port. Bit 4 in the Link Control Register disables or enables the link.

3. Modify (F2 in PCLEXE) the low byte of the Link Control register with the following values:
 - 50h to disable the link
 - 40h to re-enable the link
4. Check the low byte of the Link Status Register to see if the link is trained:
 - 12h for example indicates a x1 link width and Gen2 speed
 - 83h for example indicates a x8 link width and Gen3 speed
5. Go to the PCI device list overview. If the link has been trained, the device connected to the root port should be visible.

3.6 Retraining a PCI Express Link

To retrain a PCI Express link, set bit 5 of the Link Control register.
Modify (F2 in PCLEXE) the low byte of the Link Control register with the following value:
 - 60h to retrain the link (bit 6 and bit 5 set)

A link that was trained with incorrect width and/or speed should be trained with the correct configuration after link retraining.
Check the low byte of the Link Status Register to see if the link is trained correctly.

3.7 Summary

The Link Control and Link Status registers of a PCI Express root port can be used to debug link problems at runtime. This can be especially helpful if power-up sequencing or asynchronous reset behavior is the root cause of a link problem.
Refer to the PCI Express specification or Mindshare PCI Express book for more details about this topic.