
CGOS API
congatec operating system (CGOS) API software developers
guide

User's Guide

Revision 1.3

Revision History
Revision Date (dd.mm.yy) Author Changes
1.0 30.08.05 SML Initial release

1.1 07.03.06 SML Added section 4.8, 5.1.4, 5.10, 5.11, 5.12
Supplemented section 1 and 2.2.
Replaced parameter dwType through dwUnit.

1.2 13.10.06 SML Added sections 5.2.7, 5.2.8, 5.5.9, 5.5.10 and 5.5.11
Supplemented section 1 and 2.2.
Added API version to each CGOS function call.

1.3 12.02.08 SML Added sections 1.1, 2.4, 2.5, 2.6, 2.7, 3.2, 3.3, 4.9, 5.6.9,
5.6.10, 5.6.11, 5.7.
Supplemented section 1, 2.1, 2.2, 2.3, 3.1, 4.5, 4.5.1, 4.8.2,
4.8.6, 5.7

Copyright © 2005 congatec AG CGOSAPIm13 2/65

Preface
This user's guide provides information about using the CGOS API and its functions.

Disclaimer
The information contained within this user's guide, including but not limited to any
product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this user's guide or any other
information contained herein and hereby expressly disclaims any implied warranties of
merchantability or fitness for any particular purpose with regard to any of the foregoing.
congatec AG assumes no liability for any damages incurred directly or indirectly from
any technical or typographical errors or omissions contained herein or for discrepancies
between the product and the user's guide. In no event shall congatec AG be liable for
any incidental, consequential, special, or exemplary damages, whether based on tort,
contract or otherwise, arising out of or in connection with this user's guide or any other
information contained herein or the use thereof.

Intended Audience
This user's guide is intended for technically qualified personnel. It is not intended for
general audiences.

Symbols
The following symbols are used in this user's guide:

Warning

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Note

Notes call attention to important information that should be observed.

Copyright © 2005 congatec AG CGOSAPIm13 3/65

Terminology
Term Description
GB Gigabyte (1,073,741,824 bytes)

GHZ Gigahertz (one billion hertz)

KB Kilobyte (1024 bytes)

MB Megabyte (1,048,576 bytes)

Mbit Megabit (1,048,576 bits)

kHz Kilohertz (one thousand hertz)

MHz Megahertz (one million hertz)

N.C. Not connected

N.A. Not available

T.B.D. To be determined

Copyright Notice
Copyright © 2005, congatec AG. All rights reserved. All text, pictures and graphics are
protected by copyrights. No copying is permitted without written permission from
congatec AG.

congatec AG has made every attempt to ensure that the information in this document is
accurate yet the information contained within is supplied “as-is”.

Trademarks
Intel and Pentium are registered trademarks of Intel Corporation. Expresscard is a
registered trademark of Personal Computer Memory Card International Association
(PCMCIA). PCI Express is a registered trademark of Peripheral Component
Interconnect Special Interest Group (PCI-SIG). I²C is a registered trademark of Philips
Corporation. CompactFlash is a registered trademark of CompactFlash Association.
Winbond is a registered trademark of Winbond Electronics Corp. AVR is a registered
trademark of Atmel Corporation. ETX is a registered trademark of Kontron AG.
AMICORE8 is a registered trademark of American Megatrends Inc. XpressROM is a
registered trademark of Insyde Technology, Inc. Microsoft®, Windows®, Windows NT®,
Windows CE and Windows XP® are registered trademarks of Microsoft Corporation.
VxWorks is a registered trademark of WindRiver. conga, congatec and XTX are
registered trademark of congatec AG. All product names and logos are property of their
owners.

Certification
congatec AG is certified to DIN EN ISO 9001:2000 standard.

Copyright © 2005 congatec AG CGOSAPIm13 4/65

Warranty
congatec AG makes no representation, warranty or guaranty, express or implied
regarding the products except its standard form of limited warranty ("Limited Warranty").
congatec AG may in its sole discretion modify its Limited Warranty at any time and from
time to time.

Beginning on the date of shipment to its direct customer and continuing for the
published warranty period, congatec AG represents that the products are new and
warrants that each product failing to function properly under normal use, due to a defect
in materials or workmanship or due to non conformance to the agreed upon
specifications, will be repaired or exchanged, at congatec AG's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec AG
prior to returning the non conforming product freight prepaid. congatec AG will pay for
transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty
period in effect as of the date the repaired, exchanged or replaced product is shipped by
congatec AG, or the remainder of the original warranty, whichever is longer. This
Limited Warranty extends to congatec AG's direct customer only and is not assignable
or transferable.

Except as set forth in writing in the Limited Warranty, congatec AG makes no
performance representations, warranties, or guarantees, either express or implied, oral
or written, with respect to the products, including without limitation any implied warranty
(a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of
performance, course of dealing, or usage of trade.

congatec AG shall in no event be liable to the end user for collateral or consequential
damages of any kind. congatec AG shall not otherwise be liable for loss, damage or
expense directly or indirectly arising from the use of the product or from any other
cause. The sole and exclusive remedy against congatec AG, whether a claim sound in
contract, warranty, tort or any other legal theory, shall be repair or replacement of the
product only

Technical Support
congatec AG technicians and engineers are committed to providing the best possible
technical support for our customers so that our products can be easily used and
implemented. We request that you first visit our website at www.congatec.com for the
latest documentation, utilities and drivers, which have been made available to assist
you. If you still require assistance after visiting our website then please contact our
technical support department by email at support@congatec.com

Copyright © 2005 congatec AG CGOSAPIm13 5/65

http://www.congatec.com/
mailto:support@congatec.com

ETX® Concept and XTXTM Extension
The ETX® concept is an off the shelf, multi vendor, Single-Board-Computer that
integrates all the core components of a common PC and is mounted onto an application
specific baseboard. ETX® modules have a standardized form factor of just 95mm x
114mm and have identical pinouts on the four system connectors. The ETX® module
provides most of the functional requirements for any application. These functions
include, but are not limited to, graphics, sound, keyboard/mouse, IDE, Ethernet, parallel,
serial and USB ports. Four ruggedized connectors provide the baseboard interface and
carry all the I/O signals to and from the ETX® module.

Baseboard designers can utilize as little or as many of the I/O interfaces as deemed
necessary. The baseboard can therefore provide all the interface connectors required to
attach the system to the application specific peripherals. This versatility allows the
designer to create a dense and optimized package, which results in a more reliable
product while simplifying system integration. Most importantly ETX® applications are
scalable, which means once a product has been created there is the ability to diversify
the product range through the use of different performance class ETX® modules. Simply
unplug one module and replace it with another, no redesign is necessary.

XTX™ is an expansion and continuation of the well-established and highly successful
ETX® standard. XTX™ offers the newest I/O technologies on this proven form factor.
Now that the ISA bus is being used less and less in modern embedded applications
congatec AG offers an array of different features on the X2 connector than those
currently found on the ETX® platform. These features include new serial high speed
buses such as PCI Express™ and Serial ATA®. All other signals found on connectors
X1, X3, and X4 remain the same in accordance to the ETX® standard (Rev. 2.7) and
therefore will be completely compatible. If the embedded PC application still requires the
ISA bus then an ISA bridge can be implemented on the application specific baseboard
or the readily available LPC bus located on the XTX™ module may be used. Please
contact congatec technical support for details.

Lead-Free Designs (RoHS)
All congatec AG designs are created from lead-free components and are completely
RoHS compliant.

Electrostatic Sensitive Device
All congatec AG products are electrostatic sensitive devices and are packaged
accordingly. Do not open or handle a congatec AG product except at an
electrostatic-free workstation. Additionally, do not ship or store congatec AG products
near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the
device is contained within its original manufacturer's packaging. Be aware that failure to
comply with these guidelines will void the congatec AG Limited Warranty.

Copyright © 2005 congatec AG CGOSAPIm13 6/65

Contents
1 Introduction.. 10
1.1 Architectural overview... 11

2 Installing the CGOS API... 12
2.1 Microsoft® Windows CE.. 12
2.2 Microsoft® Windows NT/2000/XP/XP embedded/Vista... 13
2.3 Linux™.. 13
2.4 QNX®.. 13
2.5 WindRiver VxWorks.. 13
2.6 On Time RTOS-32.. 13

3 Additional Programs... 14
3.1 CGOSDUMP... 14
3.2 CGOSMON... 14
3.3 CGOSUNINST.. 14

4 Programming.. 15
4.1 Installing the DLL... 15
4.2 Obtaining Access to the congatec Module.. 16
4.3 Generic Board Functions... 17
4.4 VGA Functions.. 18
4.4.1 VGA Board Types.. 18
4.4.2 Information Structure.. 19
4.5 I2C Bus Functions... 20
4.5.1 I2C bus types... 21
4.6 Storage Area Functions... 22
4.6.1 Storage area types... 22
4.7 Watchdog.. 23
4.7.1 Mode.. 23
4.7.2 Operation Modes.. 24
4.7.3 Events.. 24
4.7.4 Stages.. 25
4.7.5 Watchdog Types.. 25
4.7.6 Information Structure.. 25
4.7.7 Configuration.. 26
4.7.8 Triggering... 27
4.7.9 Disabling the Watchdog... 27
4.7.10 Watchdog Timing Chart... 28
4.8 Hardware Monitoring... 29
4.8.1 Sensor Status Flags... 29
4.8.2 Temperature Sensor Types.. 30
4.8.3 Temperature Information Structure.. 30
4.8.4 Fan Sensor Types.. 31
4.8.5 Fan Information Structure... 31
4.8.6 Voltage Sensor Types.. 32
4.8.7 Voltage Information Structure... 32

Copyright © 2005 congatec AG CGOSAPIm13 7/65

4.9 GPIO Functions... 33

5 CGOS Library API Programmer's Reference... 35
5.1 General... 35
5.1.1 Return Values... 36
5.1.2 Board Classes.. 36
5.1.3 Information Structures.. 36
5.1.4 Unit numbers.. 36
5.2 Function Group CgosLib*.. 37
5.2.1 CgosLibGetVersion.. 37
5.2.2 CgosLibInitialize... 38
5.2.3 CgosLibUninitialize... 38
5.2.4 CgosLibIsAvailable... 38
5.2.5 CgosLibInstall... 38
5.2.6 CgosLibGetDrvVersion... 39
5.2.7 CgosLibGetLastError.. 39
5.2.8 CgosLibSetLastErrorAddress... 40
5.3 Function Group CgosBoard*... 40
5.3.1 CgosBoardCount.. 40
5.3.2 CgosBoardOpen... 41
5.3.3 CgosBoardOpenByName... 41
5.3.4 CgosBoardClose.. 42
5.3.5 CgosBoardGetName.. 42
5.3.6 CgosBoardGetInfo... 42
5.3.7 CgosBoardGetBootCounter.. 43
5.3.8 CgosBoardGetRunningTimeMeter... 43
5.4 Function Group CgosVga*.. 43
5.4.1 CgosVgaCount... 43
5.4.2 CgosVgaGetBacklight.. 44
5.4.3 CgosVgaSetBacklight... 44
5.4.4 CgosVgaGetBacklightEnable... 44
5.4.5 CgosVgaSetBacklightEnable.. 45
5.4.6 CgosVgaGetInfo... 45
5.5 Function Group CgosStorageArea*... 46
5.5.1 CgosStorageAreaCount... 46
5.5.2 CgosStorageAreaType... 46
5.5.3 CgosStorageAreaSize.. 47
5.5.4 CgosStorageAreaBlockSize... 47
5.5.5 CgosStorageAreaRead.. 47
5.5.6 CgosStorageAreaWrite.. 48
5.5.7 CgosStorageAreaErase... 48
5.5.8 CgosStorageAreaEraseStatus... 48
5.5.9 CgosStorageAreaLock... 49
5.5.10 CgosStorageAreaUnlock.. 50
5.5.11 CgosStorageAreaIsLocked.. 50
5.6 Function Group CgosI2C*... 51
5.6.1 CgosI2CCount.. 51
5.6.2 CgosI2CType... 51
5.6.3 CgosI2CIsAvailable.. 52
5.6.4 CgosI2CRead... 52
5.6.5 CgosI2CWrite... 53
5.6.6 CgosI2CReadRegister... 53

Copyright © 2005 congatec AG CGOSAPIm13 8/65

5.6.7 CgosI2CWriteRegister... 54
5.6.8 CgosI2CWriteReadCombined.. 54
5.6.9 CgosI2CGetMaxFrequency.. 55
5.6.10 CgosI2CGetFrequency... 55
5.6.11 CgosI2CSetFrequency... 55
5.7 Function Group CgosIO*... 56
5.7.1 CgosIOCount... 56
5.7.2 CgosIOIsAvailable.. 56
5.7.3 CgosIORead.. 56
5.7.4 CgosIOWrite.. 57
5.7.5 CgosIOGetDirectionCaps... 57
5.7.6 CgosIOGetDirection... 58
5.7.7 CgosIOSetDirection.. 58
5.8 Function Group CgosWDog*... 59
5.8.1 CgosWDogCount... 59
5.8.2 CgosWDogIsAvailable.. 59
5.8.3 CgosWDogTrigger... 59
5.8.4 CgosWDogGetConfigStruct... 60
5.8.5 CgosWDogSetConfigStruct.. 60
5.8.6 CgosWDogSetConfig... 60
5.8.7 CgosWDogDisable... 61
5.8.8 CgosWDogGetInfo... 61
5.9 Function Group CgosPerformance*.. 61
5.10 Function Group CgosTemperature*.. 62
5.10.1 CgosTemperatureCount... 62
5.10.2 CgosTemperatureGetInfo... 62
5.10.3 CgosTemperatureGetCurrent... 62
5.11 Function Group CgosFan*... 63
5.11.1 CgosFanCount... 63
5.11.2 CgosFanGetInfo... 63
5.11.3 CgosFanGetCurrent... 63
5.12 Function Group CgosVoltage*... 64
5.12.1 CgosVoltageCount... 64
5.12.2 CgosVoltageGetInfo... 64
5.12.3 CgosVoltageGetCurrent... 65

Copyright © 2005 congatec AG CGOSAPIm13 9/65

1 Introduction
Certain hardware features found on congatec AG modules are only accessible through
the use of a specialized API developed by congatec AG called CGOS API (congatec
operating system application program interface). The CGOS library interface provides
access to these features in a hardware independent manner when using common 32-bit
operating systems. The interface works under any version of Win32, as well as other
operating systems. Driver support is provided for the following:

• Microsoft® Windows® Vista 32

• Microsoft® Windows® XP

• Microsoft® Windows® XP embedded

• Microsoft® Windows® 2000

• Microsoft® Windows® NT

• Microsoft® Windows® CE 5.0

• Microsoft® Windows® CE 6.0

• Linux (Kernel Version 2.4.x and 2.6.x)

• QNX 6.x

• Windriver VxWorks

• On Time RTOS-32

Note

This User's Guide details the CGOS API revision 1.03. All CGOS functionality is
described within this document. The availability of the functions is also dependent on
the features of the BIOS found on the congatec CPU module.

Copyright © 2005 congatec AG CGOSAPIm13 10/65

1.1 Architectural overview
Each congatec CPU module is equipped with a rich set of additional features and
functionality, which are commonly used and are a “must-have” within the industrial
market. Some example of these feature are, watchdog, running time meter, boot
counter, I2C bus, storage areas plus more.

The biggest challenge was to design a software interface that provides access to the
onboard features and yet is independent from the underlaying hardware while being
generic and easy to handle via all of the mainstream operating systems. The customer
benefits from a generic and hardware independent interface because it can easily be
included in applications to gain access to the onboard functionality without any deep
knowledge of the hardware details. Furthermore, from the software prospect, moving to
a different CPU module (with CGEB extension) also becomes very easy and fast
because the application software doesn't needs to be modified at all. Finally, having a
generic interface over a broad range of operating systems, such as Windows
XP/Vista/CE/NT, Linux, etc. enables customers to create portable code.

Figure 1. Figure 2.
CGOS API, driver initialization CGOS API, driver up & running

The above pictures show the principle implementation of the CGOS/CGEB interface.
The CGEB (congatec embedded BIOS) code is located in the modules system BIOS. It
is 32bit native x86 object code and executable in any kind of 32bit protected mode
environment. During the driver initialization, the CGEB extension will be copied to the
driver's context and becomes part of the driver. This mechanism provides the
independence from the hardware because all the low level hardware dependencies are
already resolved from the CGEB extension code.

Copyright © 2005 congatec AG CGOSAPIm13 11/65

Application

cgos.lib

cgos.dll/.so

cgos.sys/.ko

Hardware

CGEB
extension

congatec CPU
BIOS with CGEB

extension

BIOS extensions
(e.g. Eth. boot ROM)

Module BIOS
(AMI/Insyde)

Application

cgos.lib

cgos.dll/.so

cgos.sys/.ko

Hardware

CGEB
extension

2 Installing the CGOS API
Running the sample application CGOSDUMP.EXE will dynamically install the drivers. It
is also possible to perform a dynamic installation in your own application as well.

When using Windows NT/2000/XP it is necessary to have “Administrative Rights” in
order to install the drivers, for example when running CGOSDUMP.EXE for the first
time.

There is a function called CgosLibInstall within the CGOS API, which allows you to
execute the necessary steps to setup the required drivers in an operating system
independent manner.

Note

The required files must be present in the operating system dependent directory before
calling CgosLibInstall.

The following sections lists the driver files and installation functions for those who do not
want to use the CGOS install functionality. The cgos.h header file is the same for all
operating system variants.

Note

CGOS.DLL is binary compatible between Windows 9x and NT/2000/XP/Vista, a
different version with the same name is made available for Windows CE.

On some occasions it's necessary for congatec AG to provide updated CGOS library
files or drivers for individual operating systems and/or congatec modules. When this
occurs, these individual updates may not be immediately incorporated into the CGOS
API package so it's important that you also check for individual updates when checking
for new revisions of the CGOS API package.

2.1 Microsoft® Windows CE
The CGOS API for Windows CE is already included in the Windows CE BSP, which can
be found on the congatec webpage. However, if it's for any reason required to update to
a more recent version of the API, copy all files from the Cgos\CE\BIN folder to the
“Files” directory of congatec's Windows CE platform directory (e.g. to
C:\WINCE500\PLATFORM\Congatec\Files). The inclusion of the CGOS API can be
controlled by the BSP_CGOS environment variable. This variable is set to 1 (that means
included) by default.

The BSP_CGOSDUMP variable furthermore controls the inclusion of the
CgosDump.exe utility. It is optional and can be used to verify the correct installation.
Keep in mind that CgosDump is a console application and therefore requires the
Console Windows support (and optionally the Command Processor) to be included in
the image, therefore include:

Core OS : Windows CE devices : Shell and User Interface : Shell : Command Shell :

Copyright © 2005 congatec AG CGOSAPIm13 12/65

Console Window

The library for Windows CE 4.2, 5.0 and 6.0 is located in the CE subdirectory of the
Cgos.zip archive file.

2.2 Microsoft® Windows NT/2000/XP/XP embedded/Vista
Copy all files from the Cgos\WIN\BIN folder to folder Windows\System32. Running
CgosDump, as long as you have “Administrative Rights”, will automatically install the
driver. This can also be accomplished by calling the function CgosLibInstall from
any CGOS application. Do not remove the files afterwards because the driver must
reside in the directory where it was initially installed.

Note

During installation, some keys are written to the registry to specify the location of the
driver and the library. Once installed, moving the driver and/or the library to a new
location will result in an inaccessible CGOS interface. Moreover, it's assumed that the
driver (cgos.sys) and library (cgos.dll) resides in the same directory. However, if
required the registry values can easily be removed by calling CgosLibInstall(0).

2.3 Linux™
Extract the content of the archive cgoslx.tar.gz to a working folder of a Linux
development host. On the Linux host, the kernel sources should be present. Before
building the CGOS driver, a valid build of the kernel should have occurred. Refer to the
instructions in the readme file for a detailed description of how to setup the driver.

2.4 QNX®

Extract the content of the archive cgosqx.tar.gz to a working folder of a QNX Neutrino
development host. Execute “make install” in the directory of the driver. Under QNX,
drivers usually are executed at execution ring 3 (with restricted privileges). Due to this,
the functionality of the CGOS API under QNX is slightly reduced for specific CPU
architectures. If you would like to have more details about this, contact our technical
support department by email at support@congatec.com

2.5 WindRiver VxWorks
The CGOS API for VxWorks is provided upon request. For more information contact our
technical support department by email at support@congatec.com

2.6 On Time RTOS-32
Unzip the content of the archive CgosRt.zip to a working folder of a RTOS-32
development host. Follow the readme.txt file to setup the CGOS API.

Copyright © 2005 congatec AG CGOSAPIm13 13/65

mailto:support@congatec.com
mailto:support@congatec.com

3 Additional Programs
3.1 CGOSDUMP

The CGOSDUMP.EXE tool prints out a lot of information about the CPU module and the
CGOS interface itself, such as the BIOS version,serial number of the module, the
CGOS driver and library version, the running time meter, available I2C buses and
storage areas plus more.

It must be stated that CGOSDUMP.EXE is a sample program and was not designed to
serve any applicable purpose. The source code has been provided for a better
understanding of how this sample program works.

Note

The CGOSDUMP.EXE is a sample program that has been created strictly for the use of
software developers and should never be distributed to end users in it's current form.

3.2 CGOSMON
The CGOSMON.EXE tool provides information about the different voltage and
temperature sensors on the CPU module.

Similar to CGOSDUMP.EXE, CGOSMON.EXE is a sample program and was not
designed to serve any applicable purpose. The source code has been provided for a
better understanding of how this sample program works.

Note

The CGOSMON.EXE is a sample program that has been created strictly for the use of
software developers and should never be distributed to end users in it's current form.

3.3 CGOSUNINST
When executing any CGOS application without proper installation of the CGOS API in a
Windows environment, the system will dynamically install the drivers. In some cases this
is not desired because the location of the driver files will be fixed by a registry entry. The
cgosuninst tool can be used to remove all the CGOS related entries from the Windows
registry. It's especially helpful when the location of the CGOS API files should be
changed.

Note

The cgosuninst tool only removes the registry entries, files are not deleted or removed.

Copyright © 2005 congatec AG CGOSAPIm13 14/65

4 Programming
All the API functions are exported from the CGOS.DLL/cgos.so dynamic link library and
UNICODE is supported. CGOS.DLL is binary compatible between Windows 9x and
NT/2000/XP but a different version with the same name is made available for Windows
CE.

In the INC and LIB directories you will find a header file cgos.h and import library
CGOS.LIB for C/C++. The cgos.h header file is the same for all Windows operating
system variants.

Within the files of CGOSDUMP you will find a sample project, which demonstrates CGOS
functionality under Microsoft Visual C++. Moreover, most of following source code
examples are taken from CGOSDUMP.

4.1 Installing the DLL
In order to use another API it is necessary to initialize and install the DLL by using the
CgosLibInitialize function. Additionally, it is also necessary to use the function
CgosLibUninitialize before the application terminates. This guarantees that a
proper resource cleanup has taken place before the actual termination of the
application.

Code example for installing/removing the library:

if (!CgosLibInitialize()) {
 if (!CgosLibInstall(1)) {
 //error: the driver could not be installed. Check your rights.
 exit(-1);
 }

 // the driver has been installed
 if (!CgosLibInitialize()) {
 //error: the driver still could not be opened, a reboot might be required
 exit(-1);
 }
 }

// CgosLibInitialize successful

// open board, access watchdog & VGA functions, etc.
...

// close board
...

// remove DLL
CgosLibUninitialize();

There are some other function calls which belong to the library management:

• CgosLibGetVersion determines the version of the library

• CgosLibGetDrvVersion determines the version of the low level cgos driver

Copyright © 2005 congatec AG CGOSAPIm13 15/65

• CgosLibIsAvailable determines if the library is already installed

• CgosLibGetLastError returns the last interface error

• CgosLibSetLastErrorAddress fills a variable with the last interface error

4.2 Obtaining Access to the congatec Module
Board Name

In the CGOS concept, a system consist of one or more CGOS compliant boards. A
board is a physical hardware component. Each board in the system is identified by a
unique board name with a maximum size of CGOS_BOARD_MAX_SIZE_ID_STRING
characters.

Board Classes

The class of the board describes the functionality the board offers. Currently, there are
the classes CPU, VGA, and IO. In most cases, a physical board offers more
functionality than that of just one single class. For instance the conga-X852 board offers
CPU and VGA functionality. In the CGOS concept, therefore, each board has exactly
one primary class and may have several secondary classes. In the case of the conga-
X852, the primary class is of type CGOS_BOARD_CLASS_CPU and the secondary class
of type CGOS_BOARD_CLASS_VGA. The function CgosBoardCount might be used to
determine the number of boards either for a given class or the entire system.

Once the library is initialized, the API functions CgosBoardOpen or
CgosBoardOpenByName are used to obtain a valid board handle. The board handle is
the tight relation between the CGOS driver and the application until it is closed by
CgosBoardClose.

Code example for opening/closing a CGOS board:

// board handle
HCGOS hCgos=0;

// open the board
if (!CgosBoardOpen(0,0,0,&hCgos)) {
 //error: could not open a board
 ...
 }

// put in your code here (e.g. setup & trigger the watchdog, etc.)
...

// close
if (hCgos) CgosBoardClose(hCgos);

Copyright © 2005 congatec AG CGOSAPIm13 16/65

4.3 Generic Board Functions
Numerous CgosBoard* functions are designed to allow you to retrieve general board
class independent information about the board.

CgosBoardGetNamedetermines the version the board name for a given handle

The CgosBoardGetInfo function call is used to get the information about the current
configuration and state of the board. It takes a pointer to an instance of structure
CGOSBOARDINFO, which is defined as follows:

CGOSBOARDINFO

 unsigned long dwSize
size of the structure itself, must be initialized with sizeof(CGOSBOARDINFO)

 unsigned long dwFlags
reserved. Always set to 0.

 char szReserved[CGOS_BOARD_MAX_SIZE_ID_STRING]
reserved. Always set to 0.

 char szBoard[CGOS_BOARD_MAX_SIZE_ID_STRING]
the name of the board, extracted from the BIOS id

 char szBoardSub[CGOS_BOARD_MAX_SIZE_ID_STRING]
the sub name of the board, extracted from the manufacturing data

 char szManufacturer[CGOS_BOARD_MAX_SIZE_ID_STRING]
the name of the board manufacturer, usually congatec

 CGOSTIME stManufacturingDate
the date of manufacturing

 CGOSTIME stLastRepairDate
the date of last repair

 char szSerialNumber[CGOS_BOARD_MAX_SIZE_SERIAL_STRING]
the serial number of the board, e.g. 000000050000

 unsigned short wProductRevision
the product revision in ASCII notation, major revision in high-byte,
minor revision in low-byte, e.g. 0x4130 for revision A.0

 unsigned short wSystemBiosRevision
the revision of the system BIOS, major revision in high-byte,
minor revision in low-byte, e.g. 0x0110 for revision 110

 unsigned short wBiosInterfaceRevision
the revision of CGOS API BIOS interface, major revision in high-byte,
minor revision in low-byte, e.g. 0x0100 for revision 100

Copyright © 2005 congatec AG CGOSAPIm13 17/65

 unsigned short wBiosInterfaceBuildRevision
the build counter of CGOS API BIOS interface, e.g. 0x001 for build 001

 unsigned long dwClasses
this entry represents an or-ed value of all the supported board classes
see also section 4.2 subsection "Board classes" for more information
about board classes

 unsigned long dwPrimaryClass
 this entry represents the primary board class, e.g. CGOS_BOARD_CLASS_CPU

 unsigned long dwRepairCounter
the repair counter

 char szPartNumber[CGOS_BOARD_MAX_SIZE_PART_STRING]
the part number, e.g. 45287 in the case of conga-X852

 char szEAN[CGOS_BOARD_MAX_SIZE_EAN_STRING]
the EAN code of the board

 unsigned long dwManufacturer
 the sub manufacturer of the board

CgosBoardGetBootCounter delivers the boot counter value

CgosBoardGetRunningTimeMeter delivers the running time of the board
measured in hours

4.4 VGA Functions
Boards that belong to the VGA class utilize CgosVga* functions, which are mostly used
to control LCD backlight, brightness, and contrast.

4.4.1 VGA Board Types
Following VGA board types are defined depending on the functionality:

CGOS_VGA_TYPE_UNKNOWN specifies an unknown type

CGOS_VGA_TYPE_CRT the board supports CRT

CGOS_VGA_TYPE_LCD the board supports LCD

CGOS_VGA_TYPE_LCD_DVO beside LCD, also DVO is supported

CGOS_VGA_TYPE_LCD_LVDS beside LCD, also LVDS is supported

CGOS_VGA_TYPE_TV the board offers TV out

Copyright © 2005 congatec AG CGOSAPIm13 18/65

4.4.2 Information Structure
The CgosVgaGetInfo function call is used to get the information about the current
configuration and state of the VGA board. It takes a pointer to an instance of structure
CGOSVGAINFO, which is defined as follows:

CGOSVGAINFO

 unsigned long dwSize
size of the structure itself, must be initialized with sizeof(CGOSVGAINFO)

 unsigned long dwType
 see section 4.4.1 VGA Board Types

 unsigned long dwFlags
reserved. Always set to 0.

 unsigned long dwNativeWidth
the physical display width as it is reported from the BIOS (or 0 if unknown)

 unsigned long dwNativeHeight
the physical display height as it is reported from the BIOS (or 0 if unknown)

 unsigned long dwRequestedWidth
the requested display width, currently not supported

 unsigned long dwRequestedHeight
the requested display height, currently not supported

 unsigned long dwRequestedBpp
the requested display resolution, currently not supported

 unsigned long dwMaxBacklight
the maximum value of the backlight setting

 unsigned long dwMaxContrast
 the maximum value of the contrast setting

CgosVgaCount determines the number of VGA boards in the
system

CgosVgaGetContrast determines the contrast value
CgosVgaSetContrast sets the contrast to the specified value
Both functions are controlled by the DAC which is responsible to control contrast
voltage. This DAC is usually soldered on the backplane and NOT on the CPU module.

CgosVgaGetContrastEnable determines the state of the contrast enable signal
CgosVgaSetContrastEnable sets the state of the contrast enable signal

CgosVgaGetBacklight determines the backlight value
CgosVgaSetBacklight sets the backlight to the specified value

Copyright © 2005 congatec AG CGOSAPIm13 19/65

Both functions are controlled by the DAC which is responsible to control backlight
voltage. This DAC is usually soldered on the backplane and NOT on the CPU module.

CgosVgaGetBacklightEnable determines the state of the backlight enable signal
CgosVgaSetBacklightEnable sets the state of the backlight enable signal

CgosVga* functions for backlight and contrast use percentage value from 0 to 100 to
indicate brightness.

4.5 I2C Bus Functions
congatec AG boards provide one or more I2C buses on the CPU module. Since the
hardware implementation might change, the CgosI2C* functions provide an abstracted
software layer to access the connected devices. This makes software handling for the
customer easier because the application software can be developed independently from
the CPU board and even when upgrading the CPU module the application software
shouldn't be affected.

Keep in mind that all these functions are intended for controlling external I2C bus
devices. They shouldn't be used to access any congatec AG onboard devices because
the addresses of these devices might differ from module to module or change in future.
For onboard devices, you should use the appropriate CGOS functions like
CgosVgaSetBacklight, etc.

Some CgosI2C* functions expect a bAddr which is the 8 bit I2C address byte as it
appears on the bus. The upper 7 bits contain the real address and bit 0 is used to
indicate a read/write. It should be 0 on all functions except CgosI2CRead. Whenever
possible the byte is passed to the bus as this allows you to access some devices that
are not truly I2C spec. compliant.

The CgosI2C* Register functions contain a wReg parameter that is usually an 8 bit
index within the device. The remaining bits are or-ed into the address to allow you to
easily access EEPROMs.

The functions for accessing the I2C buses are CgosI2CRead, CgosI2CWrite,
CgosI2CReadRegister, CgosI2CWriteRegister and
CgosI2CWriteReadCombined.

While CgosI2CRead only reads one byte directly from the specified address,
CgosI2CReadRegister addresses a specific register in the device which is followed
by a subsequent read of the registers content. The same applies to CgosI2CWrite
and CgosI2CWriteRegister for write accesses.

The I²C bus specification defines two operating modes; the standard mode with a
maximum clock frequency of 100 kHz and the fast mode with clock frequencies up to
400 kHz. congatec CPU modules are able to handle both modes. However, the higher
frequencies also may require a more sophisticated hardware design (e.g. an active
termination of the bus on the baseboard). The initial bus frequency is set to 100 kHz by
default. With revision 1.3 of the CGOS API, three new functions have been introduced
to control the clock frequency of the I2C bus:

Copyright © 2005 congatec AG CGOSAPIm13 20/65

CgosI2CGetMaxFrequency returns the maximum speed of the bus,
CgosI2CGetFrequency returns the current speed of the bus,
CgosI2CSetFrequency is used to set the speed of the I2C bus.

4.5.1 I2C bus types
The I2C buses are distinguished by their type:

CGOS_I2C_TYPE_PRIMARY the primary I2C bus

CGOS_I2C_TYPE_SMB the system management bus

CGOS_I2C_TYPE_DDC the I2C bus of the DDC interface

CGOS_I2C_TYPE_UNKNOWN this definition might be used in special cases

During any CgosI2C* function call, the pure type is located in the high word and the
enumerated unit number within that pure type (if more units of the same type exist) is
located in the low word of parameter dwUnit.

Note

During an I²C bus enumeration, you may notice some I²C bus types that are neither
documented herein nor in the CGOS header file, e.g. 0x00040000, 0x40040000, etc.
These bus types are for congatec internal use only and are not meant for customer use.

Code example for accessing the I²C bus:

unsigned long cnt;
unsigned long dwUnit;
unsigned long dwType;
unsigned char bEEPAddr = 0xA0;
unsigned char bData;
unsigned short wReg = 0x0;

cnt = CgosI2CCount(hCgos); /* determines the amount of available I2C interfaces */

/* navigate to the correct I2C bus ... */
for (dwUnit=0; dwUnit<cnt; dwUnit++) {

 dwType = CgosI2CType(hCgos, dwUnit);
 if(dwType == CGOS_I2C_TYPE_PRIMARY)
 {
 /* read one byte from the primary I2C bus (I2C address 0xA0, register 0) */

if(CgosI2CReadRegister(hCgos, dwUnit, (unsigned char) (bEEPAddr | 0x01),
wReg, &bdata))

 {
 /* 1 byte successfully read */

...
return;

}
 }

}

Copyright © 2005 congatec AG CGOSAPIm13 21/65

4.6 Storage Area Functions
Each board is usually equipped with a number of different storage areas. They may be
located in Flash, EEPROM, CMOS RAM, etc. A storage area is defined as a portion of
physical memory that can provide constant storage for the user's application. Every
CgosStorageArea* function call takes a type or a unit number as a second
parameter, which identifies the affected area (see also section 5.1.4 Unit numbers)

4.6.1 Storage area types
The storage areas are distinguished depending on their location in memory:

CGOS_STORAGE_AREA_EEPROM provides access to the user eeprom

CGOS_STORAGE_AREA_FLASH provides access to the flash

CGOS_STORAGE_AREA_CMOS provides access to the CMOS

CGOS_STORAGE_AREA_RAM provides access to the user RAM

CGOS_STORAGE_AREA_UNKNOWN this type is used to determine all installed areas
(not just a certain type) during a
CgosStorageAreaCount call

During any CgosStorageArea* function call, the pure type is located in the high word
and the enumerated unit number within that pure type (if more units of the same type
exist) is located in the low word of parameter dwUnit.

For example, to select the 2nd flash area of the board, dwUnit would be:

dwUnit = CGOS_STORAGE_AREA_FLASH | 0x01

Code example for accessing the storage areas:

unsigned long cnt;
unsigned long i;
unsigned long dwBlockSize;
unsigned long dwSize;
unsigned long dwUnit;

/* get information of the CGOS storage areas */
cnt=CgosStorageAreaCount(hCgos,0); /* determines the amount of available sorage areas */

/* for all storage areas ... */
for (i=0; i<cnt; i++) {

 dwUnit = CgosStorageAreaType(hCgos,i), /* determines the storage area number */
 dwBlockSize = CgosStorageAreaBlockSize(hCgos,dwUnit), /* determines the block size */
 dwSize = CgosStorageAreaSize(hCgos,dwUnit) /* determines the size of the area */

 /* print out storage areas values here */
 ...
}

/* read some (10) user bytes from eeprom to buffer */
unsigned long len = 10;
char buf[10];

Copyright © 2005 congatec AG CGOSAPIm13 22/65

if (CgosStorageAreaRead(hCgos, CGOS_STORAGE_AREA_EEPROM, 0, buf, len))
{
 /* 10 User-Bytes successfully read */
 ...
}

Observe that the input dwUnit variable for CgosStorageAreaType can be either an
index (as shown in the example above) or a particular storage area type as described in
section 5.1.4 Unit numbers

4.7 Watchdog
Most congatec AG boards are equipped with a Watchdog component, which provides
the opportunity to force the system into a defined state when the running application or
the boot process has stopped or crashed.

Note

Refer to the application note AN3_Watchdog.pdf “congatec Watchdog features and
implementation” to become more familiar with the basic Watchdog features, its
implementations and the differences between the operation modes on different
congatec products.

The congatec CGOS Library API provides the following functions, which are used to
control the behavior or to get information about the state of the Watchdog:

CgosWDogCount
CgosWDogIsAvailable
CgosWDogTrigger
CgosWDogGetConfigStruct
CgosWDogSetConfigStruct
CgosWDogSetConfig
CgosWDogDisable
CgosWDogGetInfo

4.7.1 Mode
The mode defines the major behavior of the watchdog:

CGOS_WDOG_MODE_REBOOT_PC the watchdog just restarts the board
CGOS_WDOG_MODE_STAGED the watchdog operates in staged mode (preferred)

Copyright © 2005 congatec AG CGOSAPIm13 23/65

4.7.2 Operation Modes
In staged mode, the Watchdog might offer one or more various operation modes:

CGOS_WDOG_OPMODE_DISABLED
CGOS_WDOG_OPMODE_ONETIME_TRIG
CGOS_WDOG_OPMODE_SINGLE_EVENT
CGOS_WDOG_OPMODE_EVENT_REPEAT

The supported modes can be determined through the CGOS Library API function call
CgosWDogGetInfo. The returned value CGOSWDINFO:dwOpModes represents a bit
mask of all supported modes. To check if the “repeated event mode” is supported by the
board controller watchdog, the following example can be used:

CGOSWDINFO dwi;

if (CgosWDogGetInfo(hCgos, CGOS_WDOG_TYPE_BC, &dwi))
{

if (dwi.dwOpModes & (1<<CGOS_WDOG_OPMODE_EVENT_REPEAT))
{

/* watchdog supports repeated event mode */
}

}

4.7.3 Events
An event is implemented by the onboard hardware during the situation when a
Watchdog timeout occurs. Following events are defined:

CGOS_WDOG_EVENT_INT
defines a NMI or IRQ event

Depending on the hardware implementation, this event releases a NMI (non maskable
interrupt) or an IRQ (normal hardware interrupt). It's up to the user to install an
appropriate IRQ handler which is able to handle this type of event.

CGOS_WDOG_EVENT_SCI
defines a SMI or a SCI event

Depending on the hardware implementation, this event releases a SMI (system
management interrupt) or a SCI (ACPI interrupt). It's up to the user to install an
appropriate software handler which is able to handle this type of event.

CGOS_WDOG_EVENT_RST
defines a system reset event

This event issues a system reset. Depending on the hardware implementation, this
reset will be applied to the complete system or only to parts of the system.

CGOS_WDOG_EVENT_BTN
defines a power button event

This event activates the power button signal. It can be used to switch off and even to
switch on the board again in the case of a multistage Watchdog implementation.

Copyright © 2005 congatec AG CGOSAPIm13 24/65

4.7.4 Stages
Depending on the implementation the Watchdog might offer multiple stages for
executing events. Each stage has it's own timeout value and event definition. If a stage
times out, the configured event for this stage will be executed and the next stage will be
entered. This offers the ability to implement a more refined error handling.

It is possible to define IRQ as first stage event and power button as second stage event:
If the timeout for the first stage occurs, an IRQ is generated and stage 2 becomes
active. At the same time the appropriate IRQ handler will be activated and might solve
the problem (e.g. by restarting a crashed application and triggering the Watchdog). If
the triggering of the Watchdog doesn't occur and as well the second stage times out
then the system will be shut down.

4.7.5 Watchdog Types
Following watchdog types are currently defined:

CGOS_WDOG_TYPE_UNKNOWN used when the type is not known

CGOS_WDOG_TYPE_BC the watchdog is implemented via the congatec
onboard controller

CGOS_WDOG_TYPE_CHIPSET the watchdog functionality is available just through
the board's chipset

4.7.6 Information Structure
The CgosWDogGetInfo function call is used to get information about the current
configuration and state of the Watchdog. It takes a pointer to an instance of structure
CGOSWDINFO, which is defined as follows:

CGOSWDINFO

 unsigned long dwSize
size of the structure itself, must be initialized with sizeof(CGOSWDINFO)

 unsigned long dwFlags
reserved. Always set to 0.

 unsigned long dwMinTimeout
this value depends on the hardware implementation of the Watchdog and
specifies the minimum value for the Watchdog trigger timeout.

 unsigned long dwMaxTimeout
this value depends on the hardware implementation of the Watchdog and
specifies the maximum value for the Watchdog trigger timeout.

 unsigned long dwMinDelay
this value depends on the hardware implementation of the Watchdog and
specifies the minimum value for the Watchdog enable delay.

Copyright © 2005 congatec AG CGOSAPIm13 25/65

 unsigned long dwMaxDelay
this value depends on the hardware implementation of the Watchdog and
specifies the maximum value for the Watchdog enable delay.

 unsigned long dwOpModes
the mask of the supported operation modes, see section 4.7.2 Operation Modes

 unsigned long dwMaxStageCount
the amount of supported Watchdog stages, see section 4.7.4 Stages

 unsigned long dwEvents
the mask of the supported Watchdog events, see section 4.7.3 Events

 unsigned long dwType
see section 4.7.5 Watchdog Types

4.7.7 Configuration
The CgosWDogSetConfigStruct and CgosWDogGetConfigStruct function calls
are used to set and to determine the Watchdog configuration. Both of them take a
pointer to an instance of structure CGOSWDCONFIG which is defined as follows:

CGOSWDCONFIG

 unsigned long dwSize
size of the structure itself, must be initialized with sizeof(CGOSWDCONFIG)

 unsigned long dwTimeout
it specifies the value for the Watchdog timeout. It must be in the range
CGOSWDINFO:dwMinTimeout and CGOSWDINFO:dwMaxTimeout. In case of
multiple stages, this value is not used because the configuration occurs through
the appropriate stage structure.

 unsigned long dwDelay
this value specifies the value for the Watchdog enable delay, see also figure 1
or figure 2 from section 4.7.10 Watchdog Timing Chart .

 unsigned long dwMode
the current mode, see section 4.7.1 Mode

 unsigned long dwOpMode
the mask of the supported operation modes, see section 4.7.2 Operation Modes
this value is only used in multistage mode

 unsigned long dwStageCount
the number of available Watchdog stages, see section 4.7.4 Stages
this value is only used in multistage mode

 CGOSWDSTAGE stStages[CGOS_WDOG_EVENT_MAX_STAGES]
this array holds the state definition of each defined stage
these values are only used in multistage mode

Copyright © 2005 congatec AG CGOSAPIm13 26/65

The CgosWDogSetConfig and the config structure contain time values with a
millisecond resolution. timeout is the basic time during which a CgosWDogTrigger
function must be called. delay adds an initial time period for the first trigger call.

In case of a multistage Watchdog implementation the array stStages of type
CGOSWDSTAGE contains the stage structures which incorporates the timeout and event
value for each stage. Refer also to figure 2 from section 4.7.10 Watchdog Timing Chart
and the definition below:

CGOSWDSTAGE

 unsigned long dwTimeout
it specifies the time value for the affected stage. The value must be in the
range CGOSWDINFO:dwMinTimeout and CGOSWDINFO:dwMaxTimeout

 unsigned long dwEvent
it contains the event definition for the affected stage, see section 4.7.3 Events

If the mode is set to staged then up to three stages can be defined. The stages are run
in the order they are specified after each timeout value has expired without triggering
the Watchdog.

Note

The CgosWDogSetConfig function call is provided for convenience. It offers a fast
and easy way for setting up a single staged Watchdog without the necessity to handle a
complex configuration structure. However, it's recommended to use
CgosWDogSetConfigStruct to benefit from the features of a multistage Watchdog
implementation.

4.7.8 Triggering
After configuring the Watchdog by CgosWDogSetConfigStruct the application must
continuously call CgosWDogTrigger that triggers the Watchdog.

4.7.9 Disabling the Watchdog
An enabled Watchdog can be disabled by calling CgosWDogDisable.

Copyright © 2005 congatec AG CGOSAPIm13 27/65

4.7.10 Watchdog Timing Chart

Copyright © 2005 congatec AG CGOSAPIm13 28/65

time

Runtime-Watchdog

power on

OS boot & application startup

enable delay

timeout

watchdog trigger
watchdog trigger

X

time

Runtime-Watchdog
OS boot & application startup

enable delay

stage 1 timeout

watchdog trigger
watchdog trigger

missing trigger

X

stage 2 timeout X
watchdog stage 2 event
(IRQ, NMI, SMI, Reset, Power button, etc.)

watchdog trigger

missing triggerCase 2:
Watchdog trigger
doesn' t occur at all.

Case 1:
Stage 1 times out and
watchdog trigger
occurs during stage 2.

stage 1
active

stage 1
active

stage 2
active

time

stage 1
active

stage 2
active

stage 3
active

POST-Watchdog

BIOS POST

missing trigger

watchdog event
(IRQ, NMI, SMI, Reset, Power button, etc.)

Figure 1: single stage / single event mode

Figure 2: multi stage / single event mode

int19 bootstrap
loader

watchdog stage 1 event (IRQ, NMI, SMI, Power button)

runtime watchdog active

int19 bootstrap
loader

runtime watchdog active

stage 1
active

4.8 Hardware Monitoring
The CGOS interface provides access to hardware monitoring functions such as the
voltage sensor, temperature sensor and fan control.

The function calls CgosVoltageGetCount, CgosTemperatureGetCount and
CgosFanGetCount are used to determine the number of attached sensors per type.

The function calls CgosVoltageGetInfo, CgosTemperatureGetInfo and
CgosFanGetInfo are used to determine the state and the configuration of an
attached sensor.

The function calls CgosVoltageGetCurrent, CgosTemperatureGetCurrent and
CgosFanGetCurrent are used to determine the actual measured value of an
attached sensor.

4.8.1 Sensor Status Flags
The sensor status flags (unsigned long dwFlags), which are defined in the
CGOS*INFO structure, represent the capabilities of the related sensor. The status flags
can be determined using a Cgos*GetInfo function call. The following sensor status
flags are defined:

CGOS_SENSOR_ACTIVE the sensor is active and usable

CGOS_SENSOR_ALARM the sensor supports alarm indication

CGOS_SENSOR_BROKEN there's no physical sensor attached

CGOS_SENSOR_SHORTCIRCUIT the sensor has a short circuit

Copyright © 2005 congatec AG CGOSAPIm13 29/65

4.8.2 Temperature Sensor Types
The following types of temperature sensors are defined and are dependent on their
location within the system:

CGOS_TEMP_CPU the sensor that measures the CPU temperature

CGOS_TEMP_ENV the sensor that measures the temperature of the
system environment

CGOS_TEMP_BOARD the sensor that measures the board temperature

CGOS_TEMP_BACKPLANE the sensor that measures the temperature on the
backplane

CGOS_TEMP_CHIPSETS the sensor that measures the temperature of the
chipset

CGOS_TEMP_VIDEO the sensor that measures the temperature of the
video chip

CGOS_TEMP_TOPDIMM_ENV the sensor that measures the temperature of the
DRAM module on the topside of the CPU module

CGOS_TEMP_BOTDIMM_ENV the sensor that measures the temperature of the
DRAM module on the bottomside of the CPU module

CGOS_TEMP_OTHER all other temperature sensors found within the system

4.8.3 Temperature Information Structure
The CgosTemperatureGetInfo function call is used to get information about the
current configuration and state of the temperature sensor. It takes a pointer to an
instance of structure CGOSTEMPERARUREINFO, which is defined as follows:

CGOSTEMPERATUREINFO

 unsigned long dwSize
size of the structure itself, must be initialized with
sizeof(CGOSTEMPERATUREINFO)

 unsigned long dwType
see section 4.8.2.Temperature Sensor Types

 unsigned long dwRes
this value defines the granularity of the temperature sensor

 unsigned long dwMin
this is the minimum value that can be measured by the sensor

Copyright © 2005 congatec AG CGOSAPIm13 30/65

 unsigned long dwMax
this is the maximum value that can be measured by the sensor

All temperature values are in units of 1/1000th degree centigrade.

4.8.4 Fan Sensor Types
The following types of fan sensors are defined and are dependent on their location
within the system:

CGOS_FAN_CPU the sensor that represents the CPU fan

CGOS_FAN_BOX the sensor that represents the fan on the chassis

CGOS_FAN_CHIPSET the sensor that represents the fan on the chipset

CGOS_FAN_VIDEO the sensor that represents the fan on the video chip

CGOS_FAN_OTHER all other fan sensors found within the system

4.8.5 Fan Information Structure
The CgosFanGetInfo function call is used to get information about the current
configuration and state of the fan control. It takes a pointer to an instance of structure
CGOSFANINFO, which is defined as follows:

CGOSFANINFO

 unsigned long dwSize
size of the structure itself, must be initialized with sizeof(CGOSFANINFO)

 unsigned long dwType
see section 4.8.4.Fan Sensor Types

 unsigned long dwSpeedNom
this value defines the nominal speed of the fan.
If the value is -1 then the nominal speed is not supported or known

 unsigned long dwMin
this is the minimum speed of the fan

 unsigned long dwMax
this is the maximum speed of the fan

All fan speed values are in RPM (revolutions per minute).

Copyright © 2005 congatec AG CGOSAPIm13 31/65

4.8.6 Voltage Sensor Types
The following types of voltage sensors are defined and are dependent on their location
within the system:

CGOS_VOLTAGE_BAT_CMOS the sensor that measures the CMOS battery

CGOS_VOLTAGE_BAT_POWER the sensor that measures the battery voltage
in a mobile system

CGOS_VOLTAGE_5V_S0 the sensor that measures the 5V input voltage

CGOS_VOLTAGE_5V_S5 the sensor that measures the 5V standby voltage

CGOS_VOLTAGE_33V_S0 the sensor that measures the 3.3V onboard voltage

CGOS_VOLTAGE_33V_S5 the sensor that measures the 3.3V standby voltage

CGOS_VOLTAGE_12V_S0 the sensor that measures the 12V onboard voltage

CGOS_VOLTAGE_VCOREA the sensor that measures the first core voltage
(often used as CPU voltage)

CGOS_VOLTAGE_VCOREB the sensor that measures the second core voltage
(often used as memory and chipset voltage)

CGOS_VOLTAGE_DC any sensor that measures an onboard voltage that
can't be covered by the previous definitions

CGOS_VOLTAGE_DC_STANDBY any sensor that measures a standby voltage that
can't be covered by the previous definitions

CGOS_VOLTAGE_OTHER specified if none of the above can be applied

4.8.7 Voltage Information Structure
The CgosVoltageGetInfo function call is used to get information about the current
configuration and state of the voltage control. It takes a pointer to an instance of
structure CGOSVOLTAGEINFO, which is defined as follows:

CGOSVOLTAGEINFO

 unsigned long dwSize
size of the structure itself, must be initialized with
sizeof(CGOSVOLTAGEINFO)

 unsigned long dwType
see section 4.8.5.Voltage Sensor Types

 unsigned long dwNom
this value defines the nominal voltage of the sensor.

Copyright © 2005 congatec AG CGOSAPIm13 32/65

If the value is -1 then the nominal voltage is not supported or known

 unsigned long dwRes
this value defines the granularity of the voltage sensor

 unsigned long dwMin
this is the minimum value that can be determined by the sensor

 unsigned long dwMax
this is the maximum value that can be determined by the sensor

All of the above mentioned voltage values are in units of 1/1000th volt.

Code example to enumerate through all the voltage sensors:

static CGOSVOLTAGEINFO voltageInfo = {0};
unsigned long i, setting, status, monCount = 0;
voltageInfo.dwSize = sizeof (voltageInfo);
monCount = CgosVoltageCount(hCgos);

 printf("\nNumber of voltage monitors: %d\n", monCount);
 if(monCount != 0)
 {
 for(i = 0; i < monCount; i++)
 {
 if(CgosVoltageGetInfo(hCgos, i, &voltageInfo))
 {
 printf("Voltage monitor %d information:\n", i);
 printf("Type: %d\n", voltageInfo.dwType);
 printf("Resolution: %d\n", voltageInfo.dwRes);
 printf("Nominal value: %d\n", voltageInfo.dwNom);
 printf("Max. Value: %d\n", voltageInfo.dwMax);
 printf("Min. Value: %d\n", voltageInfo.dwMin);
 }
 if(CgosVoltageGetCurrent(hCgos, i, &setting, &status))
 {
 printf("\n");
 printf("Current setting: %d\n", setting);
 printf("Current status: %d\n", status);
 }
 printf("\nPress key to continue...\n");
 getch();
 }
 }

4.9 GPIO Functions
Various industrial standards, such as COM Express™, specify pins for general purpose
I/Os. The CGOS interface provides functions to control these hardware GPIO pins.

The function call CgosIOCount is used to determine the amount of available GPIO
units. Each GPIO unit is able to handle up to 32 GPIs/GPOs/GPIOs.

Similar to each other group of functions, a call of CgosIOIsAvailable is used to
determine the availability of the desired GPIO unit.

With the function calls CgosIORead and CgosIOWrite, it is possible to read from or
write to the GPIO pins.

Copyright © 2005 congatec AG CGOSAPIm13 33/65

CgosIOGetDirectionCaps returns the direction capabilities of the pins handled by
the selected GPIO unit. A bit set in the input pin field indicates that this bit can handle a
GPI. A bit set in the output pin field indicates that this bit can handle a GPO. A bit set in
input and output pin field indicates that the corresponding pin's direction can be
changed, i.e. this bit handles a GPIO. A bit set only in the input pin field handles a
hardwired GPI. A bit set only in the output pin field handles a hardwired GPO. Bit
positions set neither in the input nor the output pin fields have no corresponding pin at
all.

The function call CgosIOGetDirection returns the current direction of the GPIO pins. A
bit set to 1 in this field indicates that the respective pin is configured as an input while a
bit set to 0 indicates that the respective pin is configured as an output. Notice that the
binary values for pins that are not implemented are unspecified and can be either 0 or 1.
Therefore, it's recommended to cross check the result of CgosIOGetDirection with the
result of CgosIOGetDirectionCaps.

Example:

 unsigned long ulCurrentPinDirection;
 unsigned long ulInputPins, ulOutputPins;
 unsigned long ulInputValue, ulOutputValue;

 if(CgosIOGetDirectionCaps(hCgos, ulUnit, &ulInputPins, &ulOutputPins))
{

 /* if the result is: ulInputPins = 0x0000000F, ulOutputPins = 0x000000F0 */
 /* then */
 /* pins 0 ... 3 are GPIs (general purpose inputs) */
 /* pins 4 ... 7 are GPOs (general purpose outputs) */

 if(CgosIOGetDirection(hCgos, ulUnit, &ulCurrentPinDirection))

 {
 /* all availabe & configured input pins */

ulInputPins &= ulCurrentPinDirection;
 /* all availabe & configured output pins */

ulOutputPins &= ~ulCurrentPinDirection;
/* get the value of the input pins */
CgosIORead(hCgos, ulUnit, &ulInputValue);
/* set the value of the output pins (e.g. all to 1) */
ulOutputValue = ulOutputPins;
CgosIOWrite(hCgos, ulUnit, ulOutputValue);

 }
 }

Furthermore, CgosIOSetDirection is used to change the direction of a GPIO pin.
Notice that changing the pin direction configuration is not supported for the
COM Express™ GPIO unit as GPI/GPO configuration is fixed by spec./design.
Therefore, the respective function will fail for COM Express™ and is only added here for
completeness.

Copyright © 2005 congatec AG CGOSAPIm13 34/65

5 CGOS Library API Programmer's
Reference

5.1 General
The CGOS (congatec operating system) Library API provides access to congatec
specific board information and features.

The API is compatible and identical across all congatec boards and all supported
operating systems. It is divided into function groups for:

CgosLib* Management functions for the library API itself

CgosBoard* Board information

CgosVga* VGA or LCD information and control

CgosStorageArea* Storage Area (EEPROM, Flash, ...) access

CgosI2C* I2C bus access

CgosIO* GPIO access

CgosWDog* Watchdog control

CgosPerformance* Performance information and control

CgosTemperature* Temperature information and control

CgosFan* Fan information

CgosVoltage* Voltage information

Note

The function group for Performance is not available in the currently released CGOS
API. When calling these functions the result will be 0 (failure).

All of them provide a Cgos*Count() function to retrieve the number of available units.
All other functions within that group require a dwUnit parameter. In all cases this can
simply be the zero based unit number.

Some functions and structures contain version numbers. All 16 bit version numbers
contain the major number in the high byte and the minor in the low byte in BCD. BIOS
and board controller version numbers should simply be treated as 3 BCD digits as only
that combination together with the board name yields useful information.

All 32 bit version numbers contain the 16 bit version number in the high word and a build
or subversion number in the low word.

For function call details and parameters also refer to the cgos.h header file.

Copyright © 2005 congatec AG CGOSAPIm13 35/65

5.1.1 Return Values
Unless they return a count or version number, all Cgos* functions return 1 for success
and 0 for failure. Other return values are stored in pointers passed to the function.

5.1.2 Board Classes
In a system with several CGOS compliant boards, the board class is used to distinguish
between the hardware types of the installed boards. Currently, board classes are
defined for CPU, VGA and IO boards, respectively:

CGOS_BOARD_CLASS_CPU
CGOS_BOARD_CLASS_VGA
CGOS_BOARD_CLASS_IO

5.1.3 Information Structures
The API defines several information structures in cgos.h They are used to store the
returned values during Cgos*GetInfo calls. Before using these structures, the
dwSize entry of each info structure must be initialized with the size of the structure itself
(sizeof(CGOS*INFO)). This provides independence between the application and the
library if the structure is extended in future releases of the library.

5.1.4 Unit numbers
Almost all function calls take a unique unit number that is used to identify a dedicated
unit. Usually the unit number is between 0 and the return value -1 of the related
Cgos*Count function call. It can be taken as an index for devices of the same type.
The following example shows how to determine the current value of the CPU
temperature sensor:

Example 1.
static CGOSTEMPERATUREINFO temperatureInfo = {0};
unsigned long dwUnit, monCount = 0, dwTemp, dwState;
temperatureInfo.dwSize = sizeof (temperatureInfo);
// determine number of temperature sensors
monCount = CgosTemperatureCount(hCgos);

 printf("Number of temperature monitors: %d\n", monCount);
 if(monCount != 0)
 {
 for(dwUnit = 0; dwUnit < monCount; dwUnit++)
 {
 if(CgosTemperatureGetInfo(hCgos, dwUnit, &temperatureInfo))
 {

if (temperatureInfo.dwType == CGOS_TEMP_CPU)
{

// temperatureInfo now contains the info structure of the cpu sensor
// dwUnit points to the cpu temperature sensor
if (CgosTemperatureGetCurrent(hCgos, dwUnit, &dwTemp, &dwState)
{

// dwTemp and dwState contain the actual values of the cpu sensor
}

}
 }

 }
 }

Copyright © 2005 congatec AG CGOSAPIm13 36/65

A device enumeration can always be set up as shown above.
Additionally, some function calls such as all of the CgosStorageArea* and
CgosI2C* function calls can take a type number as dwUnit parameter.

The following examples used to determine the storage area size of the user EEPROM
(type CGOS_STORAGE_AREA_EEPROM) are equivalent:

Example 2.

unsigned long dwUnit;
unsigned long dwSize;
unsigned long areaCount = CgosStorageAreaCount(hCgos,CGOS_STORAGE_AREA_UNKNOWN);

for(dwUnit = 0; dwUnit < areaCount; dwUnit++)
{

if (CgosStorageAreaType(hCgos,dwUnit) == CGOS_STORAGE_AREA_EEPROM))
{
 dwSize = CgosStorageAreaSize(hCgos,dwUnit);
}

}

Example 3.

unsigned long dwSize;
dwSize = CgosStorageAreaSize(hCgos,CGOS_STORAGE_AREA_EEPROM);

Note

The device enumeration as shown in Example 1 is the preferred way to obtain access
to the unit information and works for all function groups. Example 3 shows a convenient
way to access the unit through its type definition but keep in mind that this method is not
available for all function groups.

5.2 Function Group CgosLib*
The CgosLib* functions are used to initialize and to remove the CGOS Library. The
library provides the basic layer for the application to access all the CGOS API functions.
The library must be installed before any call to CGOS API functions can be executed
successfully.

5.2.1 CgosLibGetVersion
CGOS API version
1.00.000 and later

Declaration
ulong CgosLibGetVersion(void)

Remark
Returns the version of the CGOS API library. This 32 bit version number contains the 16
bit version number in the high word and a build or subversion number in the low word.

Copyright © 2005 congatec AG CGOSAPIm13 37/65

5.2.2 CgosLibInitialize
CGOS API version
1.00.000 and later

Declaration
bool CgosLibInitialize(void)

Remark
Initializes the CGOS API library.

5.2.3 CgosLibUninitialize
CGOS API version
1.00.000 and later

Declaration
bool CgosLibUninitialize(void)

Remark
De-initializes the CGOS API library and removes it from memory.

5.2.4 CgosLibIsAvailable
CGOS API version
1.00.000 and later

Declaration
bool CgosLibIsAvailable(void)

Remark
Checks if the CGOS API library has already been initialized by a prior call to function
CgosLibInitialize.

5.2.5 CgosLibInstall
CGOS API version
1.00.000 and later

Declaration
bool CgosLibInstall(unsigned int install)

Input
install 1 – installs the low level CGOS driver

0 – removes the low level CGOS driver

Copyright © 2005 congatec AG CGOSAPIm13 38/65

Remark
This function can be used to install the low level CGOS driver if a prior call of
CgosLibInitialize failed.

Keep in mind that you might need administrative privileges for executing this function
successfully.

See also section 4.1 Installing the DLL for a more detailed description about installing
the CGOS API library.

5.2.6 CgosLibGetDrvVersion
CGOS API version
1.00.000 and later

Declaration
ulong CgosLibGetDrvVersion(void)

Remark
Returns the version of the low level CGOS driver.

5.2.7 CgosLibGetLastError
CGOS API version
1.02.000 and later

Declaration
ulong CgosLibGetLastError(void)

Remark
Returns the last known error code of the low level CGOS driver. Notice that this function
really delivers the code of the last known CGOS driver error and not the result of the last
CGOS API function call. A succeeding CGOS API call doesn't affect the return value of
this function.

The following error codes are currently defined:

description error code

generic error -1 (0xFFFF FFFF)
invalid parameter -2 (0xFFFF FFFE)
function not found -3 (0xFFFF FFFD)
read error -4 (0xFFFF FFFC)
write error -5 (0xFFFF FFFB)
timeout -6 (0xFFFF FFFA)

Copyright © 2005 congatec AG CGOSAPIm13 39/65

5.2.8 CgosLibSetLastErrorAddress
CGOS API version
1.02.000 and later

Declaration
bool CgosLibSetLastErrorAddress(unsigned long *pErrNo)

Input
pErrNo buffer where the error code will be stored

Remark
With this function it's possible to specify a local memory location in the context of the
application where the last error code will be stored. It provides a convenient way of
implementing error handling without calling the CgosLibGetLastError function after
each regular CGOS API function call.

See section 5.2.7.CgosLibGetLastError for a detailed list of valid error codes.

5.3 Function Group CgosBoard*
The CgosBoard* routines are used to obtain a handle to a dedicated board and specific
board information like the number of boots or the total running time.

5.3.1 CgosBoardCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosBoardCount(unsigned long dwClass,unsigned long dwFlags)

Input
dwClass the hardware class of the board, see also 4.2 subsection "Board classes"
dwFlags either CGOS_BOARD_OPEN_FLAGS_DEFAULT or

CGOS_BOARD_OPEN_FLAGS_PRIMARYONLY

CGOS_BOARD_OPEN_FLAGS_DEFAULT
counts all boards of the given hardware class

CGOS_BOARD_OPEN_FLAGS_PRIMARYONLY
counts only boards which primary board class
matches the given hardware class

Remark
Returns the number of installed CGOS compliant boards with the specified board class
dwClass. In case of dwClass is 0, the total number of boards in the system will be
returned.

Copyright © 2005 congatec AG CGOSAPIm13 40/65

5.3.2 CgosBoardOpen
CGOS API version
1.00.000 and later

Declaration
bool CgosBoardOpen(unsigned long dwClass, unsigned long dwNum,
unsigned long dwFlags, HCGOS *phCgos)

Input
dwClass the hardware class of the board, see also 4.2 subsection "Board classes"
dwNum the subsequent number of the selected board in it's class, starting from 0
dwFlags either CGOS_BOARD_OPEN_FLAGS_DEFAULT or

CGOS_BOARD_OPEN_FLAGS_PRIMARYONLY

CGOS_BOARD_OPEN_FLAGS_DEFAULT
scans for all boards of the specified hardware class,
regardless if it's the primary class or the secondary class

CGOS_BOARD_OPEN_FLAGS_PRIMARYONLY
scans for boards which primary board class
matches the specified hardware class

phCgos buffer where the board handle will be stored

Remark
Each CGOS compliant board in the system will be addressed by its own unique board
handle. This function is used to open such a board and to obtain a valid board handle. If
there is more then one CGOS board in the system, each board can be individually
selected by its board class dwClass and a subsequent enumeration of dwNum. On
success, the function returns the board handle in *phCgos.

CGOS_BOARD_OPEN_FLAGS_PRIMARYONLY might be used for dwFlags to select a
board of a dedicated board class. Together with an enumerated counter starting from 0
the board can be addressed exactly. For instance, the call to open the 2nd (cgos
compliant) vga board would be:

HCGOS hcgos;

CgosBoardOpen(CGOS_BOARD_CLASS_VGA,1,CGOS_BOARD_OPEN_FLAGS_PRIMARYONLY,&hcgos);

5.3.3 CgosBoardOpenByName
CGOS API version
1.00.000 and later

Declaration
bool CgosBoardOpenByName(const char *pszName, HCGOS *phCgos)

Input
pszName the name of the board, e.g. “X855” in case of conga-X855 CPU module

Copyright © 2005 congatec AG CGOSAPIm13 41/65

phCGOS buffer where the board handle will be stored

Remark
This function behaves like CgosBoardOpen except that the board is specified by its
name. On success, the function returns the board handle in *phCgos.

5.3.4 CgosBoardClose
CGOS API version
1.00.000 and later

Declaration
bool CgosBoardClose(HCGOS hCgos)

Input
hCgos the board handle

Remark
Closes a board which was previously opened by either CgosBoardOpen or
CgosBoardOpenByName.

5.3.5 CgosBoardGetName
CGOS API version
1.00.000 and later

Declaration
bool CgosBoardGetName(HCGOS hCgos, const char *pszName, unsigned
long dwSize)

Input
hCgos the board handle
pszName buffer where the board name will be stored
dwSize size of the buffer in bytes,

should be at least CGOS_BOARD_MAX_SIZE_ID_STRING

Remark
Determines the name of the board addressed by hCgos.

5.3.6 CgosBoardGetInfo
CGOS API version
1.00.000 and later

Declaration
bool CgosBoardGetInfo(HCGOS hCgos, CGOSBOARDINFO *pBoardInfo)

Input
hCgos the board handle
pBoardInfo the buffer where the board information will be stored

Copyright © 2005 congatec AG CGOSAPIm13 42/65

Remark
Gets the board information of a CGOS API compliant board addressed by hCgos.

See section 4.3 Generic Board Functions for a detailed description of the
CGOSBOARDINFO structure.

5.3.7 CgosBoardGetBootCounter
CGOS API version
1.00.000 and later

Declaration
bool CgosBoardGetBootcounter(HCGOS hCgos, unsigned long *pdwCount)

Input
hCgos the board handle
pdwCount the variable where the boot counter value will be stored

Remark
Gets the current value of the boot counter.

5.3.8 CgosBoardGetRunningTimeMeter
CGOS API version
1.00.000 and later

Declaration
bool CgosBoardGetRunningTimeMeter(HCGOS hCgos, unsigned long
*pdwCount)

Input
hCgos the board handle
pdwCount the variable where the value of the running time meter will be stored

Remark
Gets the current running time of the board measured in hours.

5.4 Function Group CgosVga*
The CgosVga* functions are used to control all functionality, which belongs to VGA or
LCD (like enabling backlight, etc.).

5.4.1 CgosVgaCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosVgaCount(HCGOS hCgos)

Input
hCgos the board handle

Copyright © 2005 congatec AG CGOSAPIm13 43/65

Remark
Gets the number of installed VGA boards in the system.

5.4.2 CgosVgaGetBacklight
CGOS API version
1.00.000 and later

Declaration
bool CgosVgaGetBacklight(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwSetting)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting the variable where the backlight brigthness will be stored

Remark
Gets the backlight brigthness value. The range of the value is between 0 and
CGOS_VGA_BACKLIGHT_MAX (100), respectively 0 and 100%.

5.4.3 CgosVgaSetBacklight
CGOS API version
1.00.000 and later

Declaration
bool CgosVgaSetBacklight(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwSetting)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwSetting the backlight value

Remark
Sets the backlight brigthness value. This value must be between 0 and
CGOS_VGA_BACKLIGHT_MAX (100), respectively 0 and 100%.

5.4.4 CgosVgaGetBacklightEnable
CGOS API version
1.00.000 and later

Declaration
bool CgosVgaGetBacklightEnable(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwSetting)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting the variable where the backlight enable value will be stored

Copyright © 2005 congatec AG CGOSAPIm13 44/65

Return
*pdwSetting = 0 backlight is off
*pdwSetting = 1 backlight is on

Remark
Returns the state of the LCD's backlight.

5.4.5 CgosVgaSetBacklightEnable
CGOS API version
1.00.000 and later

Declaration
bool CgosVgaSetBacklightEnable(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwSetting)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwSetting the backlight enable value

Remark
Turns the backlight on or off.

5.4.6 CgosVgaGetInfo
CGOS API version
1.00.000 and later

Declaration
bool CgosVgaGetInfo(HCGOS hCgos, unsigned long dwUnit,
CGOSVGAINFO *pInfo)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pInfo the buffer where the VGA information will be stored

Remark
Gets the VGA board information of a CGOS API compliant board addressed by hCgos.

See section 4.4 VGA Functions for a detailed description of the CGOSVGAINFO
structure.

Copyright © 2005 congatec AG CGOSAPIm13 45/65

5.5 Function Group CgosStorageArea*
The CgosStorageArea* functions are used to control and access all different types of
storage areas on the board. A storage area can be the complete flash ROM, a part of
the flash ROM, the onboard EEPROM or the CMOS RAM. See also section 4.6.1
Storage Area Types.

Caution

Improper use of these functions may lead to permanent damage to your system thus
preventing it from booting. For instance, the complete BIOS can be destroyed by
accidentally writing to CGOS_STORAGE_AREA_FLASH.

5.5.1 CgosStorageAreaCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosStorageAreaCount(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit the dedicated storage area type (see section 4.6.1.Storage Area Types)

or CGOS_STORAGE_AREA_UNKNOWN for all storage areas

Remark
Gets the number of installed storage areas of the board.

5.5.2 CgosStorageAreaType
CGOS API version
1.00.000 and later

Declaration
ulong CgosStorageAreaType(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Return
Returns an or-ed value depending on the installed areas:

CGOS_STORAGE_AREA_EEPROM
CGOS_STORAGE_AREA_FLASH
CGOS_STORAGE_AREA_CMOS
CGOS_STORAGE_AREA_RAM

or CGOS_STORAGE_AREA_UNKNOWN if the type is not known.

Copyright © 2005 congatec AG CGOSAPIm13 46/65

Remark
Returns the types of the storage areas of the board. This function is also used to
determine the pure type of a dedicated storage area (by separating it from the unit
number).

5.5.3 CgosStorageAreaSize
CGOS API version
1.00.000 and later

Declaration
ulong CgosStorageAreaSize(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Remark
Returns the size of the storage area in bytes.

5.5.4 CgosStorageAreaBlockSize
CGOS API version
1.00.000 and later

Declaration
ulong CgosStorageAreaBlockSize(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Remark
Returns the block size of a storage area block in bytes.

5.5.5 CgosStorageAreaRead
CGOS API version
1.00.000 and later

Declaration
bool CgosStorageAreaRead(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwOffset, unsigned char *pBytes, unsigned long
dwLen)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwOffset byte offset where the data is read from
pBytes pointer to the destination buffer
dwLen number of bytes to read

Copyright © 2005 congatec AG CGOSAPIm13 47/65

Remark
Reads dwLen bytes from the storage area into buffer pBytes.

5.5.6 CgosStorageAreaWrite
CGOS API version
1.00.000 and later

Declaration
bool CgosStorageAreaWrite(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwOffset, unsigned char *pBytes, unsigned long
dwLen)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwOffset byte offset where the data writes to
pBytes pointer to the source buffer
dwLen number of bytes to write

Remark
Writes dwLen bytes from the buffer pBytes to the storage area .

5.5.7 CgosStorageAreaErase
CGOS API version
1.00.000 and later

Declaration
bool CgosStorageAreaErase(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwOffset, unsigned long dwLen)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwOffset byte offset to the area, which will be erased
dwLen number of bytes to erase

Remark
Erases dwLen bytes from the storage area starting at offset dwOffset.

5.5.8 CgosStorageAreaEraseStatus
CGOS API version
1.00.000 and later

Declaration
bool CgosStorageAreaEraseStatus(HCGOS hCgos, unsigned long
dwUnit, unsigned long dwOffset, unsigned long dwLen, unsigned
long *lpStatus)

Copyright © 2005 congatec AG CGOSAPIm13 48/65

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwOffset byte offset to the which will be erased
dwLen number of bytes to erase
lpStatus pointer to the status

Remark
Returns the status of the current area erase progress in lpStatus:

0 Erasing the specified area finished successfully
1 Erasing in progress
2 Erase error

5.5.9 CgosStorageAreaLock
CGOS API version
1.02.000 and later

Declaration
bool CgosStorageAreaLock(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwFlags, unsigned char *pBytes, unsigned long
dwLen)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwFlags reserved for future use, set to 0
pBytes pointer to the source buffer containing the secret string
dwLen number of bytes to write

Remark
This function is used to write protect a storage area. Write access to a locked storage
area is rejected as long as the area is unlocked with the CgosStorageAreaUnlock
function call. Read access to a locked storage area isn't affected by this mechanism and
therefore still permitted at any time. This kind of implementation allows you to set up
features such as protected custom serial numbers or the selective enabling of software
features. This function fails if the selected area is already locked.

The current release of the software only supports the locking of storage areas of type
CGOS_STORAGE_AREA_EEPROM. The protection mechanism for this type expects a
secret string with up to 6 characters. The length of the string must be specified in
dwLen.

Copyright © 2005 congatec AG CGOSAPIm13 49/65

5.5.10 CgosStorageAreaUnlock
CGOS API version
1.02.000 and later

Declaration
bool CgosStorageAreaUnlock(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwFlags, unsigned char *pBytes, unsigned long
dwLen)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwFlags reserved for future use, set to 0
pBytes pointer to the source buffer containing the secret string
dwLen number of bytes to write

Remark
This function is used to unlock a write protected storage area that was previously locked
using CgosStorageAreaLock. To unlock an area the secret string must be exactly the
same as the string that was used to lock the area. If the attempt to unlock an area fails,
any further try to unlock the area requires a preceding power off/on cycle of the system.
See section 5.5.9 CgosStorageAreaLock for additional details.
This function fails if the selected area is already unlocked.

5.5.11 CgosStorageAreaIsLocked
CGOS API version
1.02.000 and later

Declaration
bool CgosStorageAreaIsLocked(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwFlags)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
dwFlags reserved for future use, set to 0

Remark
This function is used to determine the locking state of a storage area. It returns true if
the selected area is locked. It returns false if the area isn't locked or if the functionality
isn't implemented. See section 5.5.9 CgosStorageAreaLock for additional details.

Copyright © 2005 congatec AG CGOSAPIm13 50/65

5.6 Function Group CgosI2C*
The CgosI2C* functions are used to control and access the onboard I2C bus.

Caution

Improper use of these functions in combination with certain devices and buses could
possibly lead to permanent damage to your system thus preventing it from booting. For
example if the configuration data of EEPROM located on the RAM module, which is
attached to SMBus, was accidentally overwritten the RAM module would become
inaccessible therefore preventing the system from completing the boot process.

5.6.1 CgosI2CCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosI2CCount(HCGOS hCgos)

Input
hCgos the board handle

Remark
Gets the number of installed I2C buses in the system.

5.6.2 CgosI2CType
CGOS API version
1.00.000 and later

Declaration
ulong CgosI2CType(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Return
Returns one of following values:

CGOS_I2C_TYPE_PRIMARY the primary I2C bus
CGOS_I2C_TYPE_SMB the system management bus
CGOS_I2C_TYPE_DDC the I2C bus of the DDC interface

or

CGOS_I2C_TYPE_UNKNOWN for unknown or special purposes
if the type is not known.

Copyright © 2005 congatec AG CGOSAPIm13 51/65

Remark
Gets the type of the addressed I2C bus.

5.6.3 CgosI2CIsAvailable
CGOS API version
1.00.000 and later

Declaration
bool CgosI2CIsAvailable(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Remark
Determines if I2C bus of type dwUnit is present.

5.6.4 CgosI2CRead
CGOS API version
1.00.000 and later

Declaration
bool CgosI2CRead(HCGOS hCgos, unsigned long dwUnit, unsigned char
bAddr, unsigned char *pBytes, unsigned long dwLen)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

bAddr the 8bit address of the affected device on the bus (bit 0 must be logical 1
to indicate a read operation)

pBytes the pointer to the destination buffer
dwLen the number of sequential bytes to read

Remark
Reads dwLen subsequent bytes from the device with address bAddr at I2C bus
dwUnit to buffer pBytes.

Copyright © 2005 congatec AG CGOSAPIm13 52/65

5.6.5 CgosI2CWrite
CGOS API version
1.00.000 and later

Declaration
bool CgosI2CWrite(HCGOS hCgos, unsigned long dwUnit, unsigned
char bAddr, unsigned char *pBytes, unsigned long dwLen)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

bAddr the 8bit address of the affected device on the bus (bit 0 must be logical 0
to indicate a write operation)

pBytes the pointer to the source buffer
dwLen the number of sequential bytes to write

Remark
Writes dwLen subsequent bytes from the buffer pBytes to the device with address
bAddr at I2C bus dwUnit.

5.6.6 CgosI2CReadRegister
CGOS API version
1.00.000 and later

Declaration
bool CgosI2CReadRegister(HCGOS hCgos, unsigned long dwUnit,
unsigned char bAddr, unsigned short wReg, unsigned char
*pDataByte)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

bAddr the 8bit address of the affected device on the bus (bit 0 must be logical 1
to indicate a read operation)

wReg the number of the register to read
pDataByte the pointer to the destination buffer

Remark
Reads one byte from the register wReg in the device with address bAddr at I2C bus
dwUnit to buffer pDataByte.

Copyright © 2005 congatec AG CGOSAPIm13 53/65

5.6.7 CgosI2CWriteRegister
CGOS API version
1.00.000 and later

Declaration
bool CgosI2CWriteRegister(HCGOS hCgos, unsigned long dwUnit,
unsigned char bAddr, unsigned short wReg, unsigned char bData)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

bAddr the 8bit address of the affected device on the bus (bit 0 must be logical 0
to indicate a write operation)

wReg the number of the register to write to
bData the byte value to write

Remark
Writes the value of bData to the register wReg in the device with address bAddr at I2C
bus dwUnit to buffer pDataByte.

5.6.8 CgosI2CWriteReadCombined
CGOS API version
1.00.000 and later

Declaration
bool CgosI2CWriteReadCombined(HCGOS hCgos, unsigned long dwUnit,
unsigned char bAddr, unsigned char *pBytesWrite, unsigned long
dwLenWrite, unsigned char *pBytesRead, unsigned long dwLenRead)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

bAddr the 8bit address of the affected device on the bus (bit 0 must be logical 0)
pBytesWrite the pointer to the source buffer which contains

the bytes to write
dwLenWrite the amount of bytes to write
pBytesRead the pointer to the destination buffer
dwLenRead the amount of bytes to read

Remark
This function combines writing to and reading from a device on the I2C bus in one step.
There will be no stop condition after writing to the device, the subsequent read cycle will
be initiated with a leading start condition.

Copyright © 2005 congatec AG CGOSAPIm13 54/65

5.6.9 CgosI2CGetMaxFrequency
CGOS API version
1.03.000 and later

Declaration
bool CgosI2CGetMaxFrequency(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwSetting)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting the variable where the maximum frequency setting will be stored

Remark
Gets the maximum operating frequency of the I2C bus specified by unit number
dwUnit in Hz.

5.6.10 CgosI2CGetFrequency
CGOS API version
1.03.000 and later

Declaration
bool CgosI2CGetFrequency(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwSetting)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting the variable where the current frequency setting will be stored

Remark
Gets the current operating frequency of the I2C bus specified by unit number dwUnit
in Hz.

5.6.11 CgosI2CSetFrequency
CGOS API version
1.03.000 and later

Declaration
bool CgosI2CSetFrequency(HCGOS hCgos, unsigned long dwUnit,
unsigned long pdwSetting)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting the frequency setting in Hz

Copyright © 2005 congatec AG CGOSAPIm13 55/65

Remark
Sets the current operating frequency of the I2C bus specified by unit number dwUnit
in Hz. Commonly used values are 100000 and 400000.

5.7 Function Group CgosIO*
The CgosIO* function group provides access to general purpose I/O pins (if there are
any).

5.7.1 CgosIOCount
CGOS API version
1.02.015 and later

Declaration
ulong CgosIOCount(HCGOS hCgos)

Input
hCgos the board handle

Remark
Gets the number of installed IO units in the system. Each IO unit is able to handle up to
32 GPIs (general purpose inputs), GPOs (general purpose outputs) or GPIOs (general
purpose I/Os).

5.7.2 CgosIOIsAvailable
CGOS API version
1.02.015 and later

Declaration
bool CgosIOIsAvailable(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Remark
Determines if IO unit dwUnit is present.

5.7.3 CgosIORead
CGOS API version
1.02.015 and later

Declaration
bool CgosIORead(HCGOS hCgos, unsigned long dwUnit, unsigned long
*pdwData)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Copyright © 2005 congatec AG CGOSAPIm13 56/65

pdwData the pointer to the destination buffer

Remark
Reads the value of the input pins of IO unit dwUnit. It's recommended to combine this
value with the result of CgosIOGetDirectionCaps. See section 4.9.GPIO Functions
for details.

5.7.4 CgosIOWrite
CGOS API version
1.02.015 and later

Declaration
bool CgosIOWrite(HCGOS hCgos, unsigned long dwUnit, unsigned long
dwData)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

dwData the data to write

Remark
Writes the value dwData to the output pins of IO unit dwUnit. It's recommended to
combine this value with the result of CgosIOGetDirectionCaps. See section
4.9.GPIO Functions for details.

5.7.5 CgosIOGetDirectionCaps
CGOS API version
1.02.015 and later

Declaration
bool CgosIOGetDirectionCaps(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwInputs, unsigned long *pdwOutputs)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

pdwInputs the pointer to the destination buffer of the input capabilities

pdwOutputs the pointer to the destination buffer of the output capabilities

Remark
Determines the input and the output capabilities of the IO unit dwUnit. Each
GPI/GPO/GPIO is represented by a bit in the variables pdwInputs and pdwOutputs.
If the pin has input capabilities, the respective pin in pdwInputs is set to 1. If the pin
has output capabilities, the respective pin in pdwOutputs is set to 1. If the pin has input
and output capabilities, both respective bits in pdwInputs and pdwOutputs are set to
1. In this case, the data direction (if input or output) may be controlled by the

Copyright © 2005 congatec AG CGOSAPIm13 57/65

CgosIOSetDirection function call. See section 4.9.GPIO Functions for details.

5.7.6 CgosIOGetDirection
CGOS API version
1.02.015 and later

Declaration
bool CgosIOGetDirection(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwData)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

pdwData the pointer to the destination buffer of the direction information

Remark
Determines the current data direction of the respective GPI/GPO/GPIO pin. A bit set to
1 in this field indicates that the respective pin is configured as an input, a bit set to 0
indicates that the respective pin is configured as an output. Notice that the binary values
for pins that are not implemented are unspecified and can be 0 or 1. Therefore, it's
recommended to cross check the result of CgosIOGetDirection with the result of
CgosIOGetDirectionCaps.

5.7.7 CgosIOSetDirection
CGOS API version
1.02.015 and later

Declaration
bool CgosIOSetDirection(HCGOS hCgos, unsigned long dwUnit,
unsigned long dwData)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

dwData the direction information

Remark
Sets the current data direction of the respective GPI/GPO/GPIO pin. A bit set to 1 in this
field indicates that the related pin is configured to be an input, a bit set to 0 indicates
that the related pin is configured to be an output. Notice that the binary values for pins
that are not implemented are unspecified and should be written as 0.

Copyright © 2005 congatec AG CGOSAPIm13 58/65

5.8 Function Group CgosWDog*

5.8.1 CgosWDogCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosWDogCount(HCGOS hCgos)

Input
hCgos the board handle

Remark
Returns the number of installed Watchdogs in the system.

5.8.2 CgosWDogIsAvailable
CGOS API version
1.00.000 and later

Declaration
bool CgosWDogIsAvailable(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit Numbers

Remark
Determines if the Watchdog is present.

5.8.3 CgosWDogTrigger
CGOS API version
1.00.000 and later

Declaration
bool CgosWDogTrigger(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers

Remark
Triggers the Watchdog.

Copyright © 2005 congatec AG CGOSAPIm13 59/65

5.8.4 CgosWDogGetConfigStruct
CGOS API version
1.00.000 and later

Declaration
bool CgosWDogGetConfigStruct(HCGOS hCgos, unsigned long dwUnit,
CGOSWDCONFIG *pConfig)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pConfig the pointer to the configuration structure

Remark
Determines the configuration of the Watchdog.

5.8.5 CgosWDogSetConfigStruct
CGOS API version
1.00.000 and later

Declaration
bool CgosWDogSetConfigStruct(HCGOS hCgos, unsigned long dwUnit,
CGOSWDCONFIG *pConfig)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pConfig the pointer to the configuration structure

Remark
Sets the configuration of the Watchdog.

5.8.6 CgosWDogSetConfig
CGOS API version
1.00.000 and later

Declaration
bool CgosWDogSetConfig(HCGOS hCgos, unsigned long dwUnit,
unsigned long timeout, unsigned long delay, unsigned long mode)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
timeout the value in milliseconds before the Watchdog times out. An application

which is observed by the Watchdog must call CgosWDogTrigger within
the specified time.

delay the delay before the Watchdog starts working. This is required to prevent
a reboot while the operating system or the application initializes.

Copyright © 2005 congatec AG CGOSAPIm13 60/65

Remark
Sets the configuration of the Watchdog. While CgosWDogSetConfigStruct takes a
complete structure, CgosWDogSetConfig takes single values. Use
CgosWDogSetConfigStruct to benefit from the advantages of a staged Watchdog.

5.8.7 CgosWDogDisable
CGOS API version
1.00.000 and later

Declaration
bool CgosWDogDisable(HCGOS hCgos, unsigned long dwUnit)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit Numbers

Remark
Disables the Watchdog.

5.8.8 CgosWDogGetInfo
CGOS API version
1.00.000 and later

Declaration
bool CgosWDogGetInfo(HCGOS hCgos, unsigned long dwUnit,
CGOSWDINFO *pInfo)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pInfo pointer to the Watchdog information structure

Remark
Gets the information structure of the Watchdog.

5.9 Function Group CgosPerformance*
The CgosPerformance* function group is not implemented in the current release of the
CGOS API. Calling one of these functions returns 0.

Note

Although there are already function declarations in cgos.h for CgosPerformance*
the development is still in progress and the function declarations for this group may
change in future.

Copyright © 2005 congatec AG CGOSAPIm13 61/65

5.10 Function Group CgosTemperature*
The CgosTemperature* function group is used to access and control all the temperature
sensors in the system.

5.10.1 CgosTemperatureCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosTemperatureCount(HCGOS hCgos)

Input
hCgos the board handle

Remark
Returns the number of installed temperature sensors in the system.

5.10.2 CgosTemperatureGetInfo
CGOS API version
1.00.000 and later

Declaration
bool CgosTemperatureGetInfo(HCGOS hCgos, unsigned long dwUnit,
CGOSTEMPERATUREINFO *pInfo)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pInfo pointer to the sensor information structure

see also section 4.8.3 Temperature Information Structure

Remark
Gets the information structure of the specified temperature sensor.

5.10.3 CgosTemperatureGetCurrent
CGOS API version
1.00.000 and later

Declaration
bool CgosTemperatureGetCurrent(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwSetting, unsigned long *pdwStatus)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting pointer to the sensor's current measured value

Copyright © 2005 congatec AG CGOSAPIm13 62/65

pdwStatus pointer to the sensor's current status value
see also section 4.8.1.Sensor Status Flags

Remark
Gets the actual value of the specified temperature sensor.

5.11 Function Group CgosFan*
The CgosFan* function group is used to access and control all the fans sensors in the
system.

5.11.1 CgosFanCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosFanCount(HCGOS hCgos)

Input
hCgos the board handle

Remark
Returns the number of installed fan sensors in the system.

5.11.2 CgosFanGetInfo
CGOS API version
1.00.000 and later

Declaration
bool CgosFanGetInfo(HCGOS hCgos, unsigned long dwUnit,
CGOSFANINFO *pInfo)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pInfo pointer to the sensor information structure

see also section 4.8.5 Fan Information structure

Remark
Gets the information structure of the specified fan sensor.

5.11.3 CgosFanGetCurrent
CGOS API version
1.00.000 and later

Declaration
bool CgosFanGetCurrent(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwSetting, unsigned long *pdwStatus)

Copyright © 2005 congatec AG CGOSAPIm13 63/65

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting pointer to the sensor's current measured value
pdwStatus pointer to the sensor's current status value

see also section 4.8.1 Sensor Status Flags

Remark
Gets the actual value of the specified fan sensor.

5.12 Function Group CgosVoltage*
The CgosVoltage* function group is used to access and control all the voltage sensors
in the system.

5.12.1 CgosVoltageCount
CGOS API version
1.00.000 and later

Declaration
ulong CgosVoltageCount(HCGOS hCgos)

Input
hCgos the board handle

Remark
Returns the number of installed voltage sensors in the system.

5.12.2 CgosVoltageGetInfo
CGOS API version
1.00.000 and later

Declaration
bool CgosVoltageGetInfo(HCGOS hCgos, unsigned long dwUnit,
CGOSVOLTAGEINFO *pInfo)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pInfo pointer to the sensor information structure

see also section 4.8.7 Voltage Information structure

Remark
Gets the information structure of the specified voltage sensor.

Copyright © 2005 congatec AG CGOSAPIm13 64/65

5.12.3 CgosVoltageGetCurrent
CGOS API version
1.00.000 and later

Declaration
bool CgosFanGetCurrent(HCGOS hCgos, unsigned long dwUnit,
unsigned long *pdwSetting, unsigned long *pdwStatus)

Input
hCgos the board handle
dwUnit see section 5.1.4 Unit numbers
pdwSetting pointer to the sensor's current measured value
pdwStatus pointer to the sensor's current status value

see also section 4.8.1 Sensor Status Flags

Remark
Gets the actual value of the specified voltage sensor.

Copyright © 2005 congatec AG CGOSAPIm13 65/65

	1 Introduction
	1.1 Architectural overview

	2 Installing the CGOS API
	2.1 Microsoft® Windows CE
	2.2 Microsoft® Windows NT/2000/XP/XP embedded/Vista
	2.3 Linux™
	2.4 QNX®
	2.5 WindRiver VxWorks
	2.6 On Time RTOS-32

	3 Additional Programs
	3.1 CGOSDUMP
	3.2 CGOSMON
	3.3 CGOSUNINST

	4 Programming
	4.1 Installing the DLL
	4.2 Obtaining Access to the congatec Module
	4.3 Generic Board Functions
	4.4 VGA Functions
	4.4.1 VGA Board Types
	4.4.2 Information Structure

	4.5 I2C Bus Functions
	4.5.1 I2C bus types

	4.6 Storage Area Functions
	4.6.1 Storage area types

	4.7 Watchdog
	4.7.1 Mode
	4.7.2 Operation Modes
	4.7.3 Events
	4.7.4 Stages
	4.7.5 Watchdog Types
	4.7.6 Information Structure
	4.7.7 Configuration
	4.7.8 Triggering
	4.7.9 Disabling the Watchdog
	4.7.10 Watchdog Timing Chart

	4.8 Hardware Monitoring
	4.8.1 Sensor Status Flags
	4.8.2 Temperature Sensor Types
	4.8.3 Temperature Information Structure
	4.8.4 Fan Sensor Types
	4.8.5 Fan Information Structure
	4.8.6 Voltage Sensor Types
	4.8.7 Voltage Information Structure

	4.9 GPIO Functions

	5 CGOS Library API Programmer's Reference
	5.1 General
	5.1.1 Return Values
	5.1.2 Board Classes
	5.1.3 Information Structures
	5.1.4 Unit numbers

	5.2 Function Group CgosLib*
	5.2.1 CgosLibGetVersion
	5.2.2 CgosLibInitialize
	5.2.3 CgosLibUninitialize
	5.2.4 CgosLibIsAvailable
	5.2.5 CgosLibInstall
	5.2.6 CgosLibGetDrvVersion
	5.2.7 CgosLibGetLastError
	5.2.8 CgosLibSetLastErrorAddress

	5.3 Function Group CgosBoard*
	5.3.1 CgosBoardCount
	5.3.2 CgosBoardOpen
	5.3.3 CgosBoardOpenByName
	5.3.4 CgosBoardClose
	5.3.5 CgosBoardGetName
	5.3.6 CgosBoardGetInfo
	5.3.7 CgosBoardGetBootCounter
	5.3.8 CgosBoardGetRunningTimeMeter

	5.4 Function Group CgosVga*
	5.4.1 CgosVgaCount
	5.4.2 CgosVgaGetBacklight
	5.4.3 CgosVgaSetBacklight
	5.4.4 CgosVgaGetBacklightEnable
	5.4.5 CgosVgaSetBacklightEnable
	5.4.6 CgosVgaGetInfo

	5.5 Function Group CgosStorageArea*
	5.5.1 CgosStorageAreaCount
	5.5.2 CgosStorageAreaType
	5.5.3 CgosStorageAreaSize
	5.5.4 CgosStorageAreaBlockSize
	5.5.5 CgosStorageAreaRead
	5.5.6 CgosStorageAreaWrite
	5.5.7 CgosStorageAreaErase
	5.5.8 CgosStorageAreaEraseStatus
	5.5.9 CgosStorageAreaLock
	5.5.10 CgosStorageAreaUnlock
	5.5.11 CgosStorageAreaIsLocked

	5.6 Function Group CgosI2C*
	5.6.1 CgosI2CCount
	5.6.2 CgosI2CType
	5.6.3 CgosI2CIsAvailable
	5.6.4 CgosI2CRead
	5.6.5 CgosI2CWrite
	5.6.6 CgosI2CReadRegister
	5.6.7 CgosI2CWriteRegister
	5.6.8 CgosI2CWriteReadCombined
	5.6.9 CgosI2CGetMaxFrequency
	5.6.10 CgosI2CGetFrequency
	5.6.11 CgosI2CSetFrequency

	5.7 Function Group CgosIO*
	5.7.1 CgosIOCount
	5.7.2 CgosIOIsAvailable
	5.7.3 CgosIORead
	5.7.4 CgosIOWrite
	5.7.5 CgosIOGetDirectionCaps
	5.7.6 CgosIOGetDirection
	5.7.7 CgosIOSetDirection

	5.8 Function Group CgosWDog*
	5.8.1 CgosWDogCount
	5.8.2 CgosWDogIsAvailable
	5.8.3 CgosWDogTrigger
	5.8.4 CgosWDogGetConfigStruct
	5.8.5 CgosWDogSetConfigStruct
	5.8.6 CgosWDogSetConfig
	5.8.7 CgosWDogDisable
	5.8.8 CgosWDogGetInfo

	5.9 Function Group CgosPerformance*
	5.10 Function Group CgosTemperature*
	5.10.1 CgosTemperatureCount
	5.10.2 CgosTemperatureGetInfo
	5.10.3 CgosTemperatureGetCurrent

	5.11 Function Group CgosFan*
	5.11.1 CgosFanCount
	5.11.2 CgosFanGetInfo
	5.11.3 CgosFanGetCurrent

	5.12 Function Group CgosVoltage*
	5.12.1 CgosVoltageCount
	5.12.2 CgosVoltageGetInfo
	5.12.3 CgosVoltageGetCurrent

