

COM Express™ conga-CEVAL

Detailed description of the congatec COM Express[™] Type 2 evaluation carrier board

User's Guide (Rev C.x)

Revision 1.0

Revision History

RevisionDate (yyyy.mm.dd)AuthorChanges1.02013.09.17AEM• Initial release.

This user's guide provides information about the components, features and connectors available on the congatec COM Express[™] Type 2 evaluation carrier board.

Disclaimer

The information contained within this user's guide, including but not limited to any product specification, is subject to change without notice.

congatec AG provides no warranty with regard to this user's guide or any other information contained herein and hereby expressly disclaims any implied warranties of merchantability or fitness for any particular purpose with regard to any of the foregoing. congatec AG assumes no liability for any damages incurred directly or indirectly from any technical or typographical errors or omissions contained herein or for discrepancies between the product and the user's guide. In no event shall congatec AG be liable for any incidental, consequential, special, or exemplary damages, whether based on tort, contract or otherwise, arising out of or in connection with this user's guide or any other information contained herein or the use thereof.

Intended Audience

This user's guide is intended for technically qualified personnel. It is not intended for general audiences.

Lead-Free Designs (RoHS)

All congatec AG designs are created from lead-free components and are completely RoHS compliant.

Electrostatic Sensitive Device

All congatec AG products are electrostatic sensitive devices and are packaged accordingly. Do not open or handle a congatec AG product except at an electrostatic-free workstation. Additionally, do not ship or store congatec AG products near strong electrostatic, electromagnetic, magnetic, or radioactive fields unless the device is contained within its original manufacturer's packaging. Be aware that failure to comply with these guidelines will void the congatec AG Limited Warranty.

Symbols

Warnings indicate conditions that, if not observed, can cause personal injury.

Caution

Cautions warn the user about how to prevent damage to hardware or loss of data.

Notes call attention to important information that should be observed.

Describes the connector that must be used with the conga-CEVAL evaluation carrier board, not the connector found on the conga-CEVAL evaluation carrier board.

Link to connector layout diagram

This link icon is located in the top left corner of each page. It provides a direct link to the conga-CEVAL connector layout diagram.

Copyright Notice

Copyright © 2007, congatec AG. All rights reserved. All text, pictures and graphics are protected by copyrights. No copying is permitted without written permission from congatec AG.

congatec AG has made every attempt to ensure that the information in this document is accurate yet the information contained within is supplied "as-is".

Trademarks

Product names, logos, brands, and other trademarks featured or referred to within this user's guide, or the congatec website, are the property of their respective trademark holders. These trademark holders are not affiliated with congatec AG, our products, or our website.

Warranty

congatec AG makes no representation, warranty or guaranty, express or implied regarding the products except its standard form of limited warranty ("Limited Warranty"). congatec AG may in its sole discretion modify its Limited Warranty at any time and from time to time.

Beginning on the date of shipment to its direct customer and continuing for the published warranty period, congatec AG represents that the products are new and warrants that each product failing to function properly under normal use, due to a defect in materials or workmanship or due to non conformance to the agreed upon specifications, will be repaired or exchanged, at congatec AG's option and expense.

Customer will obtain a Return Material Authorization ("RMA") number from congatec AG prior to returning the non conforming product freight prepaid. congatec AG will pay for transporting the repaired or exchanged product to the customer.

Repaired, replaced or exchanged product will be warranted for the repair warranty period in effect as of the date the repaired, exchanged or replaced product is shipped by congatec AG, or the remainder of the original warranty, whichever is longer. This Limited Warranty extends to congatec AG's direct customer only and is not assignable or transferable.

Except as set forth in writing in the Limited Warranty, congatec AG makes no performance representations, warranties, or guarantees, either express or implied, oral or written, with respect to the products, including without limitation any implied warranty (a) of merchantability, (b) of fitness for a particular purpose, or (c) arising from course of performance, course of dealing, or usage of trade.

congatec AG shall in no event be liable to the end user for collateral or consequential damages of any kind. congatec AG shall not otherwise be liable for loss, damage or expense directly or indirectly arising from the use of the product or from any other cause. The sole and exclusive remedy against congatec AG, whether a claim sound in contract, warranty, tort or any other legal theory, shall be repair or replacement of the product only

Certification

congatec AG is certified to DIN EN ISO 9001 standard.

Technical Support

congatec AG technicians and engineers are committed to providing the best possible technical support for our customers so that our products can be easily used and implemented. We request that you first visit our website at www.congatec.com for the latest documentation, utilities and drivers, which have been made available to assist you. If you still require assistance after visiting our website then contact our technical support department by email at support@congatec.com

Terminology

Term	Description
PCI Express (PCIe)	Peripheral Component Interface Express – next-generation high speed Serialized I/O bus
PCI Express Lane	One PCI Express Lane is a set of 4 signals that contains one differential line for
	transmitter and one differential line for receiver. Clocking information is embedded into the data stream.
x1, x2, x4, x16	x1 refers to one PCI Express Lane of basic bandwidth; x2 to a collection of two PCI Express
	Lanes; etc. Also referred to as x1, x2, x4 or x16 link.
ExpressCard	A PCMCIA standard built on the latest USB 2.0 and PCI Express buses.
USB	Universal Serial Bus
SATA	Serial AT Attachment: serial-interface standard for hard disks
AC '97/HDA	Audio CODEC (Coder-Decoder) / High Definition Audio
LPC	Low Pin-Count Interface: a low speed interface used for peripheral circuits such as Super
	I/O controllers, which typically combine legacy-device support into a single IC.
I ² C Bus	Inter-Integrated Circuit Bus: is a simple two-wire bus with a software-defined protocol that
	was developed to provide the communications link between integrated circuits in a system.
SM Bus	System Management Bus: is a popular derivative of the I ² C-bus.
SPI Bus	Serial Peripheral Bus
GBE	Gigabit Ethernet
LVDS	Low-Voltage Differential Signaling
SDVO	Serial Digital Video Out is a proprietary technology introduced by Intel® to add additional
	video signaling interfaces to a system.
CRT	Cathode Ray Tube
DDC	Display Data Channel is an I ² C bus interface between a display and a graphics adapter.
N.C.	Not connected
N.A.	Not available
T.B.D.	To be determined

Contents

1	COM Express [™] Specification Overview8
1.1 1.2 1.3	Concept of COM Express™
2	Connector Layout12
3	Specifications13
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.4	Mechanical Dimensions13Power Supply13Status LEDs D1-D415PWR_OK Signal15Power-up Control16Module Type Detection16CMOS Battery17Environmental Specifications17
4	Connector Subsystems Rows A,B,C,D
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.4.1 4.1.4.2 4.1.4.3 4.1.4.3 4.1.4.4 4.1.5 4.1.6 4.1.7 4.1.8 4.1.9	Connector Pinout Rows A and B. 18 SM Bus 19 I²C Bus 20 SPI Bus 20 HDA Audio. 21 HDA/AC97 Header X49 22 Low Pin Count Bus (LPC) 22 LPC Super I/O device 23 LPC Firmware Hubs. 25 Universal Serial Bus (USB) 25 LAN 10/100/1000 26 Serial ATA 26 VGA. 27 LVDS Flat Panel Interface 28
4.1.9.1 4.1.9.2 4.1.10	Flat Panel and Backlight Power Supply 29 Flat Panel and Backlight Power Supply Connection 30 PCI Express x1 Connectors 31

4.1.11	ExpressCard and PCI Express Mini Card	. 33
4.1.11.1	PCI Express Mini Card	.33
4.1.12	TV-Out	. 36
4.2	Connector Pinout Rows C and D	. 37
4.2.1	PCI Express Graphics (PEG)	. 38
4.2.2	PATA 100	. 39
4.2.3	CompactFlash Socket	. 40
4.2.4	PCI BUS	. 41
5	Additional Features	. 42
5.1	Reset	. 42
5.2	PC Speaker (Beeper)	. 42
5.3	Debug Display	. 43
5.4	TPM Physical Presence Pin	. 43
5.5	Ground Test Points	. 43
5.6	Fan Connector and Power Configuration	. 44
5.7	SMART Battery Management Module	. 44
5.8	Feature Connector	. 45
6	Mechanical Drawing conga-CEVAL	. 46
7	Industry Specifications	. 47

1 COM Express[™] Specification Overview

1.1 Concept of COM Express[™]

Computer On Module (COM) is off-the-shelf technology that has been in the embedded computer industry for years. A Computer On Module integrates all the core components and standard I/O interfaces of a common PC onto an application specific carrier board. The key advantage of the COM in the embedded computer industries is that all the highly integrated, high speed components such as CPU, chipsets and memory are combined on a small module form factor for easy adaptation to different applications across multiple market segments.

COM Express[™] modules have standardized form factors and have specified pinouts on the two system connectors that remain the same regardless of the vendor. The COM Express[™] module reflects the functional requirements for a wide range of embedded applications. These functions include, but are not limited to, PCI Express, PCI, Graphics, High Definition Audio, parallel ATA, serial ATA, Gigabit Ethernet and USB ports. Two ruggedized, shielded connectors provide the carrier board interface and carry all the I/O signals to and from the COM Express[™] module.

Carrier board designers can utilize as little or as many of the I/O interfaces as deemed necessary. Therefore the carrier board can provide all the interface connectors required to attach the system to the application specific peripherals. This versatility allows the designer to create a dense and optimized package, which results in a more reliable product while simplifying system integration. Most importantly COM Express[™] applications are scalable, which means once a product has been created there is the ability to diversify the product range through the use of different performance class COM Express[™] modules. Simply unplug one module and replace it with another - no redesign is necessary.

1.2 Module Form Factors

The COM Express[™] specification was developed by the PCI Industrial Computer Manufacturing Group (PICMG) in close collaboration with many leading companies across the embedded industry in order to find an implementation solution to handle high speed serial I/Os, processors and chipsets. COM Express[™] 2.0 specifies three form factors, as well as seven different types of connector pinouts.

The three form factors are Compact, Basic and Extended. With a form factor of 95x95mm and single (or two stacked) horizontal mount SO-DIMM, the Compact module targets space-constrained mobile systems The Basic module footprint is 125mm x 95mm and focuses also on space-constrained, low power systems which typically contain one (or two stacked) horizontal mounted SO-DIMM. The Extended footprint is slightly larger at 155mm x 110mm and supports up to two full size DIMM (or mini DIMM) modules or two horizontal/vertical mount SO-DIMMS to accommodate larger memory configurations for high-performance CPUs, chipsets and multiprocessor systems. The placement of the shielded 220-pin connectors and the mounting holes are identical between these form factors.

Note

The conga-CEVAL COM Express[™] Type 2 evaluation carrier board can host either Compact or Basic form factor CPU modules.

Compact, Basic and Extended Form Factor

1.3 Module Types Overview

The COM Express[™] specification 2.0 defines seven different pinout types.

Types	Connector	PCI Express	PEG/	PCI	IDE	SATA	LAN	USB 2.0/	Display
	Rows	Lanes	SDVO		Ports	Ports	Ports	SuperSpeed USB	Interfaces
Type 1	A-B	Up to 6				4	1	8/0	VGA, TV Out, LVDS
Type 2	A-B C-D	Up to 22	1/2	32 bit	1	4	1	8/0	VGA, TV Out, LVDS, PEG/SDVO
Туре 3	A-B C-D	Up to 22	1/2	32 bit		4	3	8/0	VGA, TV Out, LVDS, PEG/SDVO
Type 4	A-B C-D	Up to 32	1/2		1	4	1	8/0	VGA, TV Out, LVDS, PEG/SDVO
Туре 5	A-B C-D	Up to 32	1/2			4	3	8/0	VGA, TV Out, LVDS, PEG/SDVO
Туре 6	A-B C-D	Up to 24	1/-			4	1	8/4	3xDDI, PEG, VGA, LVDS
Type 10	А-В	Up to 4	-/1			2	1	8/0	1xDDI

Table 1COM Express™ Specification 2.0 Pinout Types Definitions

The conga-CEVAL evaluation board uses the Type 2 pin-out definition. This pinout offers the balance between older technology such as PCI and Parallel ATA while providing the latest technologies including PCI Express, Serial ATA and PCI Express graphics.

The Type 2 pinout definition features the following:

- Dual 220 pin connectors (A-B and C-D)
- 32bit PCI interface
- IDE port (to support legacy ATA devices)
- Up to 22 PCI Express lanes (up to 6 on A-B and up to 16 on C-D)
- 16 of the 22 PCI Express lanes commonly used for PCI Express Graphics
- Option for SDVO (pins shared with PCI Express Graphics)
- Up to 8 USB 2.0 ports
- Up to 4 Serial ATA
- Up to 6 PCI Express lanes (Gen1/Gen2)
- Support pins for up to 2 ExpressCards

- Dual 24-bit LVDS channels ExpressCards
- Analog VGA
- TV Out
- HDA/AC '97 digital audio interface
- Gigabit Ethernet
- LPC interface
- 8 GPIO pins

2 Connector Layout

The conga-CEVAL rev C.x evaluation board layout picture on the right features component description overlay that includes pinout indicators as well as name designators.

Select the Adobe 'Zoom-In-Tool' and zoom in on a given component to see the descriptive text. Hover over the component and the 'Zoom-In-Tool' will change, indicating a link. Click on the link to navigate to the area in the document where the component is described in detail.

Use the mouse icon in the top left hand corner of the destination page to return to the connector layout picture.

3 Specifications

3.1 Mechanical Dimensions

294.0 mm x 244.0mm

Height approx. 43mm

3.2 Power Supply

The conga-CEVAL can be used with standard ATX (Connector X70) power supplies.

When using an ATX power supply, the COM Express[™] module starts after the power-on button M1 is pressed. The ATX power supply can also be used in AT mode. In this case the module will start after the power switch on the power supply is turned on

Jumper X6	Configuration
1 - 2	ATX Power supply mode (default)
2 - 3	ATX Power supply runs in AT mode

Connector Type

X6: 2.54mm grid jumper.

The conga-CEVAL can also be used with 12V DC power supply (connector M2 and M7).

Connector	Configuration
M7	Ground
M2	+12VDC (11,4 – 12,6V)
	Type
	Туре
Amm diama	tor plug
4mm diame	ter plug

The +3.3V and +5V used by some devices on the COM Express[™] evaluation carrier board are generated onboard only if 12V DC input (M2, M7) is used and ATX power connector not plugged in. Otherwise the voltages +3.3V and +5V are delivered by ATX power supply with voltage regulators disabled.

The voltages used are the +3.3V and +5V. The -5V is not available and the -12V is not used.

The following table lists the pinout for connector X70.

Table 2Connector X70 Pinout

Pin	Signal	Description	Pin	Signal	Description
1	+3.3V	Power Supply +3.3VDC	13	+3.3V	Power Supply +3.3VDC
2	+3.3V	Power Supply +3.3VDC	14	-12V	Power Supply -12DC
3	GND	Power Ground	15	GND	Power Ground
4	+5V	Power Supply +5VDC	16	PS_ON#	Power Supply On (active low). Short this pin to GND to switch power supply ON, disconnect from GND to switch OFF.
5	GND	Power Ground	17	GND	Power Ground
6	+5V	Power Supply +5VDC	18	GND	Power Ground
7	GND	Power Ground	19	GND	Power Ground
8	PWR_OK	Power Ok: A status signal generated by the power supply to notify the computer that the DC operating voltages are within the ranges required for proper computer operation.	20	NC	
9	5V_SB	Standby Power Supply +5VDC	21	+5V	Power Supply +5VDC
10	+12V	Power Supply +12DC	22	+5V	Power Supply +5VDC
11	+12V	Power Supply +12DC	23	+5V	Power Supply +5VDC
12	+3.3V	Power Supply +3.3VDC	24	GND	Power Ground

3.2.1 Status LEDs D1-D4

The four status LEDs D1, D2, D3 and D3 indicate different power states of the conga-CEVAL. *The LEDs indicate if the power rail is ON or OFF* even if the power rail is generated by ATX PSU or by onboard voltage regulator. Refer to the following table for detailed information.

Table 3 Power LEDs

LEDs D1-D4	Power state	I	_EDs	D1-D4	4
All Off	No power applied.			-	-
D1	Indicates that 12V is present on the baseboard	D2	<u>2</u> D1	<u>D3</u>	_ <u>D4</u>
D2	Indicates that 5V standby is present on the baseboard				
D3	Indicates that 5V is present on the baseboard				
D4	Indicates that 3.3V is present on the baseboard				

3.2.2 PWR_OK Signal

The COM Express[™] specification defines the signal PWR_OK, which is a HIGH active input from the main power supply to the module and indicates whether the power is good.

Jumper X11 on the conga-CEVAL provides the ability to choose different settings for this signal.

Jumper X11	Configuration
1 - 2	Add 3.3V Pullup with 10K to signal PWR_OK.
3 - 4	Connect PWRGOOD of ATX power supply (default).
5 - 6	Connect PWRGOOD of onboard DCDC regulator.

Connector Type

X11: 2.54 mm grid jumper.

3.2.3 **Power-up Control**

The Power-up control switches the ATX power supply on or off. The SUS_S3# activates the ATX power supply by driving the PS_ON# signal. If DC power input (M2, M7) is used, voltage regulators start after applying +12V.

The native system power-up support of congatec modules uses the 'SUS_S3#' signal to control the 'PS_ON#' signal, which switches the ATX power supply on or off. When using the SUS_S3#' signal, the COM ExpressTM module is capable of supporting Suspend to RAM (S3).

When the system goes to Suspend to RAM (S3) or Soft Off (S5), the 'SUS_S3#' signal is asserted by the chipset of the module. Through the use of an inverter, the low active 'PS_ON#' signal goes high and switches off the ATX power supply. If the system resides in a power-down system state, any system wake-up event invokes the chipset of the module to deassert the 'SUS_S3#' signal. This transitions the system to Full-on (S0).

How Suspend to RAM is implemented on a COM ExpressTM module may differ depending on the module manufacturer. For this reason, it is recommended that a hardware jumper be implemented on the carrier board in order to provide the ability to choose if the '*PS_ON#*' signal should be controlled either by the '*SUS_S3#*' signal or '*SUS_S5#*' signal. This is accomplished on earlier conga-CEVAL revisions through the use of jumper X63. The conga-CEVAL revision B.0 and later do not implement the jumper X63 (see note below).

Note

On conga-CEVAL revision B.0 and later, the X63 4-pin jumper connector that switches between SUS_S3# and SUS_S5# is not available because the PS_ON# is driven only by SUS_S3#.

3.2.4 Module Type Detection

The COM ExpressTM Specification includes four signals (*'TYPE0#'*, *'TYPE1#'*, *'TYPE2#'* and *'TYPE10#'*) to determine the pinout type of the module connected to the carrier board. These pins are either left open (NC) or strapped to ground (GND) by the module to encode the pinout type according to the table below. The *'TYPE10#'* pin is for dual use. It indicates to the carrier board that a Type 10 module is installed. It also indicates that a Rev 1.0 or Rev 2.0 module is installed. For more information, refer to the COM ExpressTM Specification Rev 2.0.

Table 4Module Type Detection

Module Type	Pin TYPE0#	Pin TYPE1#	Pin TYPE2#	Pin TYPE10#	
Module Type 1	X (not present)	X (not present)	X (not present)	NC	
Module Type 2	NC	NC	NC	NC	
Module Type 3	GND	NC	NC	NC	No IDE interface
Module Type 4	NC	GND	NC	NC	No PCI interface
Module Type 5	GND	GND	NC	NC	No IDE, no PCI interface
Module Type 6	NC	NC	GND	NC	No IDE, no PCI interface

Module Type	Pin TYPE0#	Pin TYPE1#	Pin TYPE2#	Pin TYPE10#	
Module Type 10	X (not present)	X (not present)	X (not present)	NC/PD (4.7k)/12V	NC indicates Pin-out Rev. 2.0 PD (4.7k) indicates Pin-out Type 10 12V indicates Pin-out Rev.1.0

Note

If an incompatible module pinout type is detected on the conga-CEVAL, an onboard logic will prevent the board from powering up the whole system by controlling the 'PS_ON#' signal of the ATX power supply.

The 'TYPE[0:2]0#' signals are not present in Type 1 and Type 10 modules.

3.3 CMOS Battery

The conga-CEVAL includes a battery that supplies power to the RTC circuit of the COM Express[™] CPU module. The battery provides 3V of power. The specified battery type is CR2032.

To fulfill the requirements of the EN60950, the conga-CEVAL incorporates two current-limiting devices (resistor and diode) in the battery power supply path.

Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose used batteries according to the manufacturer's instructions.

3.4 Environmental Specifications

Temperature Operation: 0° to 60°C Storage: -20° to +80°C

Humidity Operation: 10% to 90% Storage: 5% to 95%

The above operating temperatures must be strictly adhered to at all times.

Humidity specifications are for non-condensing conditions.

4 Connector Subsystems Rows A,B,C,D

4.1 Connector Pinout Rows A and B

Table 5Module Type 2 Connector Pinout Rows A and B

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A1	GND (FIXED)	B1	GND (FIXED)	A56	PCIE_TX4-	B56	PCIE_RX4-
A2	GBE0_MDI3-	B2	GBE0_ACT#	A57	GND	B57	GPO2
A3	GBE0_MDI3+	B3	LPC_FRAME#	A58	PCIE_TX3+	B58	PCIE_RX3+
A4	GBE0_LINK100#	B4	LPC_AD0	A59	PCIE_TX3-	B59	PCIE_RX3-
A5	GBE0_LINK1000#	B5	LPC_AD1	A60	GND (FIXED)	B60	GND (FIXED)
A6	GBE0_MDI2-	B6	LPC_AD2	A61	PCIE_TX2+	B61	PCIE_RX2+
A7	GBE0_MDI2+	B7	LPC_AD3	A62	PCIE_TX2-	B62	PCIE_RX2-
A8	GBE0_LINK#	B8	LPC_DRQ0#	A63	GPI1	B63	GPO3
A9	GBE0_MDI1-	B9	LPC_DRQ1#	A64	PCIE_TX1+	B64	PCIE_RX1+
A10	GBE0_MDI1+	B10	LPC_CLK	A65	PCIE_TX1-	B65	PCIE_RX1-
A11	GND (FIXED)	B11	GND (FIXED)	A66	GND	B66	WAKE0#
A12	GBE0_MDI0-	B12	PWRBTN#	A67	GPI2	B67	WAKE1#
A13	GBE0_MDI0+	B13	SMB_CK	A68	PCIE_TX0+	B68	PCIE_RX0+
A14	GBE0_CTREF	B14	SMB_DAT	A69	PCIE_TX0-	B69	PCIE_RX0-
A15	SUS_S3#	B15	SMB_ALERT#	A70	GND (FIXED)	B70	GND (FIXED)
A16	SATA0_TX+	B16	SATA1_TX+	A71	LVDS_A0+	B71	LVDS_B0+
A17	SATA0_TX-	B17	SATA1_TX-	A72	LVDS_A0-	B72	LVDS_B0-
A18	SUS_S4#	B18	SUS_STAT#	A73	LVDS_A1+	B73	LVDS_B1+
A19	SATA0_RX+	B19	SATA1_RX+	A74	LVDS_A1-	B74	LVDS_B1-
A20	SATA0_RX-	B20	SATA1_RX-	A75	LVDS_A2+	B75	LVDS_B2+
A21	GND (FIXED)	B21	GND (FIXED)	A76	LVDS_A2-	B76	LVDS_B2-
A22	SATA2_TX+	B22	SATA3_TX+	A77	LVDS_VDD_EN	B77	LVDS_B3+
A23	SATA2_TX-	B23	SATA3_TX-	A78	LVDS_A3+	B78	LVDS_B3-
A24	SUS_S5#	B24	PWR_OK	A79	LVDS_A3-	B79	LVDS_BKLT_EN
A25	SATA2_RX+	B25	SATA3_RX+	A80	GND (FIXED)	B80	GND (FIXED)
A26	SATA2_RX-	B26	SATA3_RX-	A81	LVDS_A_CK+	B81	LVDS_B_CK+
A27	BATLOW#	B27	WDT	A82	LVDS_A_CK-	B82	LVDS_B_CK-
A28	(S)ATA_ACT#	B28	AC/HDA_SDIN2	A83	LVDS_I2C_CK	B83	LVDS_BKLT_CTRL
A29	AC/HDA_SYNC	B29	AC/HDA_SDIN1	A84	LVDS_I2C_DAT	B84	VCC_5V_SBY
A30	AC/HDA_RST#	B30	AC/HDA_SDIN0	A85	GPI3	B85	VCC_5V_SBY
A31	GND (FIXED)	B31	GND (FIXED)	A86	KBD_RST#	B86	VCC_5V_SBY
A32	AC/HDA_BITCLK	B32	SPKR	A87	KBD_A20GATE	B87	VCC_5V_SBY
A33	AC/HDA_SDOUT	B33	I2C_CK	A88	PCIE0_CK_REF+	B88	BIOS_DIS1#

Pin	Row A	Pin	Row B	Pin	Row A	Pin	Row B
A34	BIOS_DIS0#	B34	I2C_DAT	A89	PCIE0_CK_REF-	B89	VGA_RED
A35	THRMTRIP#	B35	THRM#	A90	GND (FIXED)	B90	GND (FIXED)
A36	USB6-	B36	USB7-	A91	SPI_POWER	B91	VGA_GRN
A37	USB6+	B37	USB7+	A92	SPI_MISO	B92	VGA_BLU
A38	USB_6_7_OC#	B38	USB_4_5_OC#	A93	GPO0	B93	VGA_HSYNC
A39	USB4-	B39	USB5-	A94	SPI_CLK	B94	VGA_VSYNC
A40	USB4+	B40	USB5+	A95	SPI_MOSI	B95	VGA_I2C_CK
A41	GND (FIXED)	B41	GND (FIXED)	A96	GND	B96	VGA_I2C_DAT
A42	USB2-	B42	USB3-	A97	TYPE10#	B97	SPI_CS#
A43	USB2+	B43	USB3+	A98	RSVD	B98	RSVD
A44	USB_2_3_OC#	B44	USB_0_1_OC#	A99	RSVD	B99	RSVD
A45	USB0-	B45	USB1-	A100	GND (FIXED)	B100	GND (FIXED)
A46	USB0+	B46	USB1+	A101	RSVD	B101	RSVD
A47	VCC_RTC	B47	EXCD1_PERST#	A102	RSVD	B102	RSVD
A48	EXCD0_PERST#	B48	EXCD1_CPPE#	A103	RSVD	B103	RSVD
A49	EXCD0_CPPE#	B49	SYS_RESET#	A104	VCC_12V	B104	VCC_12V
A50	LPC_SERIRQ	B50	CB_RESET#	A105	VCC_12V	B105	VCC_12V
A51	GND (FIXED)	B51	GND (FIXED)	A106	VCC_12V	B106	VCC_12V
A52	PCIE_TX5+	B52	PCIE_RX5+	A107	VCC_12V	B107	VCC_12V
A53	PCIE_TX5-	B53	PCIE_RX5-	A108	VCC_12V	B108	VCC_12V
A54	GPI0	B54	GPO1	A109	VCC_12V	B109	VCC_12V
A55	PCIE_TX4+	B55	PCIE_RX4+	A110	GND (FIXED)	B110	GND (FIXED)

4.1.1 SM Bus

On the COM Express[™] module, the System Management Bus (SMB) is powered by the standby power rail in order to have control over the system during the system states S0-S5. The devices on the conga-CEVAL (e.g. PCI Express clock buffer or PCI Express connectors) using the SMB are normally powered by the 3.3V main power. To avoid current leakage between the main power of the carrier board and the standby power of the module, a bus switch separates the SMB on the conga-CEVAL carrier board from the SMB of the module.

The SM Bus signals are available on the feature connector (X27) described in section 5.8.

4.1.2 I²C Bus

The I²C signals are available in different locations on the conga-CEVAL including the feature connector (X27) described in section 5.8 of this document.

The conga-CEVAL includes a socket for an I²C EEPROM (U17) that can be used for test purposes during the system development. This 8 pin DIP socket can be used with different 2-wire serial EEPROMS (for example 24C04 / 08 / 16 ...) and can be accessed easily by using the I²C control commands implemented in the congatec CGOS API driver. Refer to the COM Express[™] module's user's guide and CGOS manual for details.

Furthermore, the conga-CEVAL includes an I²C application implemented by a PCA9555 device from Philips, a 16-bit I²C I/O port with interrupt. This device provides 16 bits of general purpose parallel Input/Output (GPIO) expansion for I²C applications. It provides the ability to display and read different byte configurations via the I²C digital I/O jumper connectors X5 and X12.

Contact the congatec AG support team for more information.

Connector Type

X5/X12: 2.54mm grid header

4.1.3 SPI Bus

The SPI Bus is connected to the SPI BIOS flash that supports off-module BIOS flash boot. The conga-CEVAL revision C1 has onboard an SPI socket for 8-lead Small Outline Integrated Circuit (200 mils).

4.1.4 HDA Audio

The Realtek ALC888 HDA audio codec is mounted onboard the conga-CEVAL. The stereo audio output interface of this codec is available on the X53 connector. The Windows driver for this audio codec can be found on the congatec website at www.congatec.com in the 'Products' section under 'Accessories'.

The HDA codec can be used either in stereo mode or 5.1 audio mode. The modes can be changed in the audio codec driver.

Stereo Jack 1	Stereo Mode	5.1 Channel Mode
Тір	Line Input Left	Rear Channel Output Left
Ring	Line Input Right	Rear Channel Output Right
Sleeve	Ground	Ground

Stereo Jack 2	Stereo Mode	5.1 Channel Mode
Тір	Line Output Left	Front Channel Output Left
Ring	Line Output Right	Front Channel Output Right
Sleeve	Ground	Ground

Stereo Jack 3	Stereo Mode	5.1 Channel Mode
Тір	Microphone	Center Output
Ring	Not used	Low Frequency Effects
		Output (Sub Wooter)
Sleeve	Ground	Ground

Connector Type

X53: triple 3.5mm stereo plug

> Note

Mono and stereo microphones can be used on the conga-CEVAL.

SDIN0 and SDIN2 switching are available as assembly option with jumper resistors.

congatec

4.1.4.1 HDA/AC97 Header X49

The conga-CEVAL includes a HDA header (X49), which allows the connection of other AC'97/HDA solutions. By attaching a solution to this connector, the onboard codec switches off and the connected application is then operated. congatec developed a HDA evaluation sound board that features the VIA VT1708 HDA codec. For more information about this product, contact the congatec AG support team.

The following table describes the pinout of connector X49.

Pin	Signal	Description	Pin	Signal	Description
1	+12V (750 mA fuse)	Power Supply +12VDC	2	+3.3V (750 mA fuse)	Power Supply +3.3VDC
3	AC_SYNC/HDA_ SYNC	48kHz fixed-rate, sample- synchronization signal to the CODEC(s).	4	AC_RST#/HDA_ RST#	Reset output to AC'97/HDA CODEC, active low.
5	AC_SDIN0/2/HDA_ SDOUT0/2	Serial TDM data inputs from up to 3 CODECs. SDIN2 is connected to X49 and SDIN0 is connected to the onboard HDA codec. SDIN0 and SDIN2 can be switched with resistor jumpers as assembly option.	6	AC_BITCLK/HDA_ SDOUT	12.228 MHz serial data clock generated by the external CODEC(s).
7	AC_SDOUT/HDA_ SDOUT	Serial TDM data output to the CODEC.	8	CODECSET (Input 3.3V)	Onboard codec disable input. Pull high to disable onboard audio codec.
9	GND	Power Ground	10	GND	Power Ground

Connector Type

X49: 2.54mm grid header.

4.1.4.2 Low Pin Count Bus (LPC)

To use LPC devices, they must be supported by the COM Express[™] module's BIOS. Contact the congatec AG support team for more information about this subject.

4.1.4.3 LPC Super I/O device

The conga-CEVAL integrates a Super I/O controller that provides additional interfaces such as PS/2 keyboard and mouse, two serial ports, and a parallel port. The Winbond W83627HG controller is connected to the LPC Bus of the COM Express[™] module and the module must support these interfaces in order for them to function. Refer to the module's user's guide for information about supported features.

The interfaces provided by this Super I/O controller are available on connectors X28, X38, X54 and X55. Both Serial port COM1 and COM2 are based on RS232 standard.

For the pinout of the mouse, keyboard, COM1, COM2, LPT1 and the Floppy port see the table below.

Pin	LPT1	COM1	COM2	Mouse	Keyboard
1	STROBE#	DCD#	DCD#	MSDAT	KBDAT
2	PD0	RXD	DSR	N.C.	N.C.
3	PD1	TXD	RXD	GND	GND
4	PD2	DTR#	RTS#	+5V	+5V
5	PD3	GND	TXD	MSCLK	KBCLK
6	PD4	DSR	CTS#	N.C.	N.C.
7	PD5	RTS#	DTR#		
8	PD6	CTS#	RI#		
9	PD7	RI#	GND		
10	ACK#		+5V (750mA fuse)		
11	BUSY				
12	PE				
13	SEL				
14	AUTOFD#				
15	ERROR#				
16	INIT#				
17	SELIN#				
18	GND				
19	GND				
20	GND				
21	GND				
22	GND				
23	GND				
24	GND				
25	GND				

The DIP switch M52 enables or disables the Super I/O and the KB Controller.

DIP Switch M52	Configuration
SW1 On	Super I/O Controller Enabled (default)
SW1 Off	Super I/O Controller Disabled
SW2 On	KB Controller Enabled (default)
SW2 Off	KB Controller Disabled

DIP SWITCH

The LPC Super IO address can be selected with the DIP switch M53.

DIP Switch M53	Configuration
SW1 On	Super I/O Controller PnP reg. 4Eh
SW1 Off	Super I/O Controller PnP reg. 2Eh (default)
SW2 On	No defaults for FDC UARTs LPT
SW2 Off	Default setting for FDC UARTs LPT

Mouse and Keyboard (X54): 6 pin MINI-DIN female

COM1 (X55): 9 pin, D-SUB male.

LPT1 (X55): 24 pin, D-SUB female. VGA: 15 pin, high density D-SUB female.

COM2 (X28): 10 pin, 2 row 2.54mm grid header.

4.1.4.4 LPC Firmware Hubs

The conga-CEVAL offers the possibility to boot the COM Express[™] CPU module with an external BIOS instead of the module's onboard BIOS. This can be very useful when a customized BIOS is evaluated.

Onboard the conga-CEVAL is a 32-lead PLCC socket for LPC firmware hub (FWH in socket S1). With the DIP switch M46, you can configure which firmware hub the COM Express[™] CPU module should boot from. When the yellow LED D28 is lit, this indicates the module boots with the BIOS located on the FWH in socket S1.

The table below shows the different DIP switch settings for M46 necessary to either boot from the carrier board FWH on the conga-CEVAL or to boot from the onboard FWH on the COM Express[™] CPU module.

DIP Switch	n M46	Configuration
Switch 1	Switch 2	BIOS Entry / SPI_CS0#
OFF	OFF	Module FWH or SPI
OFF	ON	Carrier FWH
ON	OFF	Carrier SPI CS0#
ON	ON	Carrier SPI CS1#

D28

4.1.5 Universal Serial Bus (USB)

Pin	Signal	
1	+5V	
2	DATA-	
3	DATA+	
4	GND	

	X51	
USB Port 3		
USB Port 2		
USB Port 1		
USB Port 0		
	(front view)	

Note

The USB ports 4 and 5 found on the connector X50 are supplied by suspend power and can be used to test the function "wake-up via USB"

4.1.6 LAN 10/100/1000

Pin	Signal	Pin	Signal
1	MDI[0]+	2	MDI[0]-
3	MDI[1]+	4	MDI[1]-
5	MDI[2]+	6	MDI[2]-
7	MDI[3]+	8	MDI[3]-

LEDs	Description
Yellow	Activity
Green	Link
D30	LK100/SLED#
D31	LK1000#

Connector Type

8 pin RJ45 plug

4.1.7 Serial ATA[™]

Pin	Signal
1	GND
2	TX+
3	TX-
4	GND
5	RX-
6	RX+
7	GND

The red LED D29 indicates activity on each SATA interface.

X50

D29

A CRT monitor can be connected using the X55 connector.

Pin	Signal
1	RED
2	GREEN
3	BLUE
4	N.C.
5	GND
6	GND
7	GND
8	GND
9	DDC Power
10	GND
11	N.C.
12	DDC DAT
13	HSYNC
14	VSYNC
15	DDC CLK

(front view)

Connector Type

VGA (X55): 15 pin, high density DSUB female

4.1.9 LVDS Flat Panel Interface

Pin	LVDS Output	Description	Pin	LVDS Output	Description
1	LVDS_I2C_DAT	I ² C data line for LVDS display use	2	LVDS_I2C_CK	I ² C clock output for LVDS display use
3	N.C.		4	N.C.	
5	GND	Power Ground	6	LVDS_A0-	LVDS Channel A differential pairs
7	LVDS_A0+	LVDS Channel A differential pairs	8	LVDS_VDD_EN	LVDS panel power enable
9	LVDS_A1-	LVDS Channel A differential pairs	10	LVDS_A1+	LVDS Channel A differential pairs
11	LVDS_BKLT_EN	LVDS panel backlight enable. (see jumper X4)	12	LVDS_A2+	LVDS Channel A differential pairs
13	LVDS_A2-	LVDS Channel A differential pairs	14	N.C.	
15	LVDS_A_CK-	LVDS Channel A differential clock	16	LVDS_A_CK+	LVDS Channel A differential clock
17	N.C.		18	LVDS_A3+	LVDS Channel A differential pairs
19	LVDS_A3-	LVDS Channel A differential pairs	20	GND	
21	LVDS_B0-	LVDS Channel B differential pairs	22	LVDS_B0+	LVDS Channel B differential pairs
23	GND	Power Ground	24	LVDS_B1-	LVDS Channel B differential pairs
25	LVDS_B1+	LVDS Channel B differential pairs	26	GND	Power Ground
27	LVDS_B2-	LVDS Channel B differential pairs	28	LVDS_B2+	LVDS Channel B differential pairs
29	GND	Power Ground	30	LVDS_B_CK+	LVDS Channel B differential clock
31	LVDS_B_CK-	LVDS Channel B differential clock	32	N.C.	
33	LVDS_B3+	LVDS Channel B differential pairs	34	LVDS_B3-	LVDS Channel B differential pairs

Connector Type

X13: 34 pin, 2 row 2mm grid header.

The polarity of the backlight enable signal LVDS_BKLT_EN from the COM Express™ module can be set up using configuration jumper X69.

Jumper X69	Configuration
1 - 2	Backlight enable HIGH active (default)
2 - 3	Backlight enable LOW active (inverted)

Backlight Polarity Config (X69)

Γ	3	
	2	
	1	

Connector Type

X69: 2.54mm grid jumper.

See section 4.1.9.2 "Flat Panel and Backlight Power Supply Connection" for information about connection possibilities for the Backlight Polarity Config. jumper X69.

4.1.9.1 Flat Panel and Backlight Power Supply

The power supply for flat panels and their backlight inverter is available on connector X2.

Pin	Signal	Pin	Signal
1	SW_VDD (1.5A Fuse)	2	SW_BACK (2.0A Fuse)
3	+5V (1.5A Fuse)	4	+12V (2.0A Fuse)
5	DIGON	6	BL_ON
7	BKLT_CTRL_DAC	8	LVDS_BKLT_CTRL_R
9	GND	10	GND

LCD Power (X2)		
2 🔳 4	4 🖬 6 🗖	8 🔳 10 🔳
1 🔳 :	3 🔳 5 🗖	7 🔳 9 🔳

Connector Type

X2: 10 pin, 2 row 2.54 mm grid box header.

Jumper X66	Configuration
1 - 2	5V LCD Voltage (default)
2 - 3	3.3V LCD Voltage

Jumper X8	Configuration
1 - 2	12V Backlight Voltage (default)
2 - 3	5V Backlight Voltage

Connector Type

X66 and X67: 2.54mm grid jumper

Note

See section 4.1.9.2 "Flat Panel and Backlight Power Supply Connection" for information about connection possibilities for the LCD Power X2 connector.

LCD Power Config (X66)		
	3 📕	
	2 📕	
	1	

Backlight Power Config		
(X67)	
	3 🔳	
	2 🔳	
	1 🔳	

4.1.9.2 Flat Panel and Backlight Power Supply Connection

The following diagram shows a typical connection possibility for powering panel/backlight by either the SW_VDD/SW_BACK signals or by using DIGON/BL_ON for external power switches.

- Signals 1-10 correspond to signals 1-10 found on the X2 connector.
- X66, X67 and X69 represent jumpers X66, X67 and X69 found on the conga-CEVAL.
- The conga-CEVAL carrier board is equipped with a Maxim MAX5362 device referred to in the diagram below as "DAC". The DAC is a 6-bit digital to analog converter..

Flat Panel Configuration Data

The flat panel configuration data (EPI extended EDID[™] 1.3 file) for most common displays is included in the congatec COM Express[™] CPU module's system BIOS. The customer also has the possibility to store a customized EPI extended EDID[™] 1.3 file in a serial EEPROM and then connect it on the conga-CEVAL (DIL 8 socket S2).

Supported EEPROMs: 24C02, 24C04 and 24C16 at address A0h.

4.1.10 PCI Express x1 Connectors

The conga-CEVAL is equipped with 4 x1 PCI Express Slots. The tables below describe the pinouts for each of these slots.

A8(

A9'

A10

A11

A13 A14 A15

A16

A17 A18 congatec the rhythm of embedded computing

PCI E	xpress Slot 0/Lane	0 Conr	nector X17	PCI Express Slot 1/Lane 1 Connector X18					
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal		
B1	+12V	A1	PRSNT#1_S0	B1	+12V	A1	PRSNT#1_S1		
B2	+12V	A2	+12V	B2	+12V	A2	+12V		
B3	N.C.	A3	+12V	B3	N.C.	A3	+12V		
B4	GND	A4	GND	B4	GND	A4	GND		
B5	SMB_CK	A5	N.C.	B5	SMB_CK	A5	N.C.		
B6	SMB_DAT	A6	N.C.	B6	SMB_DAT	A6	N.C.		
B7	GND	A7	N.C.	B7	GND	A7	N.C.		
B8	+3.3V	A8	N.C.	B8	+3.3V	A8	N.C.		
B9	N.C.	A9	+3.3V	B9	N.C.	A9	+3.3V		
B10	+3.3V Standby	A10	+3.3V	B10	+3.3V Standby	A10	+3.3V		
B11	WAKE0#	A11	PCIE_RST#	B11	WAKE0#	A11	PCIE_RST#		
B12	N.C.	A12	GND	B12	N.C.	A12	GND		
B13	GND	A13	PCIE_CLKS0+	B13	GND	A13	PCIE_CLKS1+		
B14	PCIE_TX0+	A14	PCIE_CLKS0-	B14	PCIE_TX1+	A14	PCIE_CLKS1-		
B15	PCIE_TX0-	A15	GND	B15	PCIE_TX1-	A15	GND		
B16	GND	A16	PCIE_RX0+	B16	GND	A16	PCIE_RX1+		
B17	PRSNT#2_S0	A17	PCIE_RX0-	B17	PRSNT#2_S1	A17	PCIE_RX1-		
B18	GND	A18	GND	B18	GND	A18	GND		

• Note

The JTAG pins are not connected on the 4 PCI Express connectors PCIe0 to PCIe3.

PCI Express Slot 2/Lane 3 Connector X45				PCI Express Slot 3/Lane 4 Connector X44					
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal		
B1	+12V	A1	PRSNT#1_S2	B1	+12V	A1	PRSNT#1_S3		
B2	+12V	A2	+12V	B2	+12V	A2	+12V		
B3	N.C.	A3	+12V	B3	N.C.	A3	+12V		
B4	GND	A4	GND	B4	GND	A4	GND		
B5	SMB_CK	A5	N.C.	B5	SMB_CK	A5	N.C.		
B6	SMB_DAT	A6	N.C.	B6	SMB_DAT	A6	N.C.		
B7	GND	A7	N.C.	B7	GND	A7	N.C.		
B8	+3.3V	A8	N.C.	B8	+3.3V	A8	N.C.		
B9	N.C.	A9	+3.3V	B9	N.C.	A9	+3.3V		
B10	+3.3V Standby	A10	+3.3V	B10	+3.3V Standby	A10	+3.3V		
B11	WAKE0#	A11	PCIE_RST#	B11	WAKE0#	A11	PCIE_RST#		
B12	N.C.	A12	GND	B12	N.C.	A12	GND		
B13	GND	A13	PCIE_CLKS2+	B13	GND	A13	PCIE_CLKS3+		
B14	PCIE_TX3+	A14	PCIE_CLKS2-	B14	PCIE_TX4+	A14	PCIE_CLKS3-		
B15	PCIE_TX3-	A15	GND	B15	PCIE_TX4-	A15	GND		
B16	GND	A16	PCIE_RX3+	B16	GND	A16	PCIE_RX4+		
B17	PRSNT#2_S2	A17	PCIE_RX3-	B17	PRSNT#2_S3	A17	PCIE_RX4-		
B18	GND	A18	GND	B18	GND	A18	GND		

4.1.11 ExpressCard and PCI Express Mini Card

4.1.11.1 ExpressCard

The conga-CEVAL is equipped with an ExpressCard slot (connector X16). ExpressCard is a small, modular add-in card designed to replace common PCMCIA and PC Cards. It takes advantage of the scalable, high-bandwidth serial PCI Express and USB 2.0 interfaces to provide much higher data rates. COM Express[™] modules offer support for up to two ExpressCard slots. More information about the ExpressCard Standard can be found at http://www.expresscard.org.

The following table lists the default pinout of the ExpressCard slot. It utilizes USB port 6 and PCI Express lane 2 by default.

Pin	Signal	Pin	Signal
1	GND	14	+3.3V
2	USB6-	15	+3.3V
3	USB6+	16	CLKREQ#
4	CPUSB#	17	EXCD0_CPPE#
5	RSVD	18	PCIE_CLKC0-
6	RSVD	19	PCIE_CLKC0+
7	SMB_CK	20	GND
8	SMB_DAT	21	PCIE_RX2-
9	+1.5V	22	PCIE_RX2+
10	+1.5V	23	GND
11	WAKE0#	24	PCIE_TX2-
12	+3.3V Standby	25	PCIE_TX2+
13	EXCD0_PERST#	26	GND

LED D24 is a red LED that indicates an 'Overcurrent Event' has occurred in the ExpressCard slot.

D24

4.1.11.2 PCI Express Mini Card

The conga-CEVAL is equipped with a PCI Express Mini Card socket (M40). PCI Express Mini Card is a unique small size form factor optimized for mobile computing platforms equipped with communication applications such as Wireless LAN. The small footprint connector can be implemented on carrier board designs providing the ability to insert different removable PCI Express Mini Cards. Using this approach gives the flexibility to mount an upgradable, standardized PCI Express Mini Card device to the carrier board without additional redesign cost. The PCI Express Mini Card uses USB port 7 and PCI Express lane 5 by default.

The following table lists the default pinout of the PCI Express Mini Card.

Pin	Signal	Pin	Signal
1	WAKE0#	2	+3.3V
3	RSVD	4	GND
5	RSVD	6	+1.5V
7	CLKREQ#	8	N.C.
9	GND	10	N.C.
11	PCIE_CLKC1-	12	N.C.
13	PCIE_CLKC1+	14	N.C.
15	GND	16	N.C.
17	RSVD	18	GND
19	RSVD	20	RSVD
21	GND	22	EXCD1_PERST#
23	PCIE_RX5-	24	+3.3V Standby
25	PCIE_RX5+	26	GND
27	GND	28	+1.5V
29	GND	30	SMB_CK
31	PCIE_TX5-	32	SMB_DAT
33	PCIE_TX5+	34	GND
35	GND	36	USB7-
37	RSVD	38	USB7+
39	RSVD	40	GND
41	RSVD	42	LED_WWAN#
43	RSVD	44	LED_WLAN#
45	RSVD	46	LED_WPAN#
47	RSVD	48	+1.5V
49	RSVD	50	GND
51	RSVD	52	+3.3V

The PCI Mini Card socket has three different red LEDs to indicate the presence of certain area network types. They are as follows:

LED	Indicates
21	Wireless Wide Area Network
22	Wireless Local Area Network
23	Wireless Personal Area Network

DIP Switch M47

DIP switch M47 provides the ability to switch between using different PCI Express lanes for the ExpressCard slot and PCI Express Mini Card socket. This is necessary because some congatec COM Express[™] modules have onboard devices attached to PCI Express lane 5. The default configuration is that the ExpressCard slot uses PCI Express lane 2 and the PCI Express Mini Card socket uses PCI Express lane 5.

In certain cases, it is necessary to use this DIP switch. For instance when dealing with some congatec COM Express[™] modules that support onboard Gigabit Ethernet implemented with PCI Express lane 5. This means that PCI Express lane 5 is not available externally. If the PCI Express Mini Card socket must be used as well, then it is necessary to configure it to use PCI Express lane 2 instead of the default configuration, which is PCI Express lane 5. Jumper X62 provides the ability to do this.

DIP Swith M47	Configuration
Switch 1 ON	PCIe lane 2 ExpressCard (default)
	PCIe lane 5 PCI Express Mini Card (default)
Switch 1 OFF	PCIe lane 5 ExpressCard
	PCIe lane 2 PCI Express Mini Card
Switch 2 ON	PEG port enabled (default)
Switch 2 OFF	PEG port disabled

Note

In order to use both the ExpressCard slot and PCI Express Mini Card socket at the same time, PCI Express Lane 2 and 5 must be available.

4.1.12 TV-Out

The conga-CEVAL provides TV-Out connectors for S-Video and Composite Video via connector X57. The S-Video connector can be used with a standard 4 pin SVIDEO cable whereas the Composite Video requires a coax cable with a RCA jack on each end.

Pin	Signal	Description	Pin	Signal	Description
1	Chrominance (C)	S-Video Chrominance Analog Signal (C)	2	Luminance (Y)	S-Video Luminance Analog Signal (Y)
3	GND (C)	Analog Ground for Chrominance (C)	4	GND (Y)	Analog Ground Luminance (Y)
5	GND	Analog Ground	6	GND	Analog Ground
7	Composite	Composite Video Output			

Connector Type

X57: Composite Video: Coax cable with RCA jacks on each end

S-VIDEO: 4 pin MINI-DIN female

Note

The conga-CEVAL rev C.1 does not support Composite Video Output by default because this pin is shared with SPI_CS# signal. To support this output on revision C.1, a simple hardware change is required.

4.2 Connector Pinout Rows C and D

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C1	GND (FIXED)	D1	GND (FIXED)	C56	PEG_RX1-	D56	PEG_TX1-
C2	IDE_D7	D2	IDE_D5	C57	TYPE1#	D57	TYPE2#
C3	IDE_D6	D3	IDE_D10	C58	PEG_RX2+	D58	PEG_TX2+
C4	IDE_D3	D4	IDE_D11	C59	PEG_RX2-	D59	PEG_TX2-
C5	IDE_D15	D5	IDE_D12	C60	GND (FIXED)	D60	GND (FIXED)
C6	IDE_D8	D6	IDE_D4	C61	PEG_RX3+	D61	PEG_TX3+
C7	IDE_D9	D7	IDE_D0	C62	PEG_RX3-	D62	PEG_TX3-
C8	IDE_D2	D8	IDE_REQ	C63	RSVD	D63	DDPC_CTRLCLK
C9	IDE_D13	D9	IDE_IOW#	C64	RSVD	D64	DDPC_CTRLDATA
C10	IDE_D1	D10	IDE_ACK#	C65	PEG_RX4+	D65	PEG_TX4+
C11	GND (FIXED)	D11	GND (FIXED)	C66	PEG_RX4-	D66	PEG_TX4-
C12	IDE_D14	D12	IDE_IRQ	C67	FAN_PWMOUT	D67	GND
C13	IDE_IORDY	D13	IDE_A0	C68	PEG_RX5+	D68	PEG_TX5+
C14	IDE_IOR#	D14	IDE_A1	C69	PEG_RX5-	D69	PEG_TX5-
C15	PCI_PME#	D15	IDE_A2	C70	GND (FIXED)	D70	GND (FIXED)
C16	PCI_GNT2#	D16	IDE_CS1#	C71	PEG_RX6+	D71	PEG_TX6+
C17	PCI_REQ2#	D17	IDE_CS3#	C72	PEG_RX6-	D72	PEG_TX6-
C18	PCI_GNT1#	D18	IDE_RESET#	C73	SDVO_DATA	D73	SVDO_CLK
C19	PCI_REQ1#	D19	PCI_GNT3#	C74	PEG_RX7+	D74	PEG_TX7+
C20	PCI_GNT0#	D20	PCI_REQ3#	C75	PEG_RX7-	D75	PEG_TX7-
C21	GND (FIXED)	D21	GND (FIXED)	C76	GND	D76	GND
C22	PCI_REQ0#	D22	PCI_AD1	C77	FAN_TACHOIN	D77	IDE_CBLID#
C23	PCI_RESET#	D23	PCI_AD3	C78	PEG_RX8+	D78	PEG_TX8+
C24	PCI_AD0	D24	PCI_AD5	C79	PEG_RX8-	D79	PEG_TX8-
C25	PCI_AD2	D25	PCI_AD7	C80	GND (FIXED)	D80	GND (FIXED)
C26	PCI_AD4	D26	PCI_C/BE0#	C81	PEG_RX9+	D81	PEG_TX9+
C27	PCI_AD6	D27	PCI_AD9	C82	PEG_RX9-	D82	PEG_TX9-
C28	PCI_AD8	D28	PCI_AD11	C83	PP_TPM	D83	DDPD_CTRLDATA
C29	PCI_AD10	D29	PCI_AD13	C84	GND	D84	GND
C30	PCI_AD12	D30	PCI_AD15	C85	PEG_RX10+	D85	PEG_TX10+
C31	GND (FIXED)	D31	GND (FIXED)	C86	PEG_RX10-	D86	PEG_TX10-
C32	PCI_AD14	D32	PCI_PAR	C87	GND	D87	GND
C33	PCI_C/BE1#	D33	PCI_SERR#	C88	PEG_RX11+	D88	PEG_TX11+
C34	PCI_PERR#	D34	PCI_STOP#	C89	PEG_RX11-	D89	PEG_TX11-
C35	PCI_LOCK#	D35	PCI_TRDY#	C90	GND (FIXED)	D90	GND (FIXED)
C36	PCI_DEVSEL#	D36	PCI_FRAME#	C91	PEG_RX12+	D91	PEG_TX12+
C37	PCI_IRDY#	D37	PCI_AD16	C92	PEG_RX12-	D92	PEG_TX12-
C38	PCI_C/BE2#	D38	PCI_AD18	C93	GND	D93	GND
C39	PCI_AD17	D39	PCI_AD20	C94	PEG_RX13+	D94	PEG_TX13+

Pin	Row C	Pin	Row D	Pin	Row C	Pin	Row D
C40	PCI_AD19	D40	PCI_AD22	C95	PEG_RX13-	D95	PEG_TX13-
C41	GND (FIXED)	D41	GND (FIXED)	C96	GND	D96	GND
C42	PCI_AD21	D42	PCI_AD24	C97	DDPD_CTRLCLK	D97	PEG_ENABLE#
C43	PCI_AD23	D43	PCI_AD26	C98	PEG_RX14+	D98	PEG_TX14+
C44	PCI_C/BE3#	D44	PCI_AD28	C99	PEG_RX14-	D99	PEG_TX14-
C45	PCI_AD25	D45	PCI_AD30	C100	GND (FIXED)	D100	GND (FIXED)
C46	PCI_AD27	D46	PCI_IRQC#	C101	PEG_RX15+	D101	PEG_TX15+
C47	PCI_AD29	D47	PCI_IRQD#	C102	PEG_RX15-	D102	PEG_TX15-
C48	PCI_AD31	D48	PCI_CLKRUN#	C103	GND	D103	GND
C49	PCI_IRQA#	D49	PCI_M66EN	C104	VCC_12V	D104	VCC_12V
C50	PCI_IRQB#	D50	PCI_CLK	C105	VCC_12V	D105	VCC_12V
C51	GND (FIXED)	D51	GND (FIXED)	C106	VCC_12V	D106	VCC_12V
C52	PEG_RX0+	D52	PEG_TX0+	C107	VCC_12V	D107	VCC_12V
C53	PEG_RX0-	D53	PEG_TX0-	C108	VCC_12V	D108	VCC_12V
C54	TYPE0#	D54	PEG_LANE_RV#	C109	VCC_12V	D109	VCC_12V
C55	PEG_RX1+	D55	PEG_TX1+	C110	GND (FIXED)	D110	GND (FIXED)

4.2.1 PCI Express Graphics (PEG)

The PEG Port (connector X29) utilizes PCI Express lanes 16-32 and is suitable to drive a x16 link for an external high-performance PCI Express Graphics card. It supports a theoretical bandwidth of up to 4 GB/s. For information about the pinout of the PEG port connector refer to the 'PCI Express Card Electromechanical Specification, Rev. 1.1'.

(X29)

4.2.2 PATA 100

The conga-CEVAL has one PATA (Parallel ATA) port that is accessible via the X25 connector. The following table lists the pinout for the PATA port. LED D25 indicates activity on the PATA port.

_						P	AT	A ()	X2	5)							
2 4	6	8 1	0 🔳 1	2 🔳 14	4 🔳 16 🛛	18	20	22	24 🔳	26 🔳 2	28	30	32	34	36 🔳	38 🔳	40
1 3	5	7 🔳	9 🔳 1	1 🔳 1:	3 🔳 15	17	19	21 🔳	23 🔳	25 🔳 2	27	29	31 🔳	33	35 🔳	37 🔳	39

D25

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	HDRST#	2	GND	21	IDE_DRQ	22	GND
3	IDE_D7	4	IDE_D8	23	IDE_IOW#	24	GND
5	IDE_D6	6	IDE_D9	25	IDE_IOR#	26	GND
7	IDE_D5	8	IDE_D10	27	IDE_RDY	28	CSEL
9	IDE_D4	10	IDE_D11	29	IDE_ACK	30	GND
11	IDE_D3	12	IDE_D12	31	IDE_INTRQ	32	N.C.
13	IDE_D2	14	IDE_D13	33	IDE_A1	34	CBLID_P#
15	IDE_D1	16	IDE_D14	35	IDE_A0	36	IDE_A2
17	IDE_D0	18	IDE_D15	37	IDE_CS1#	38	IDE_CS3#
19	GND	20	N.C.	39	ACTIVITY	40	GND

Connector Type

X25: 40 pin, 2 row 2.54mm grid box header.

D25

4.2.3 CompactFlash Socket

The conga-CEVAL has a CompactFlash socket (X26) that is connected to the PATA port. The CF card can be configured as either a Master or Slave device through the use of jumper X21. LED D25 indicates activity on the PATA port.

Jumper X21	Configuration
1 - 2	CF Slave (default)
2 - 3	CF Master

Connector Type

X21: 2.54mm grid jumper.

The following table lists the pinout of the CompactFlash socket.

Pin	Signal	Pin	Signal
1	GND	26	CD1
2	IDE_D3	27	IDE_D11
3	IDE_D4	28	IDE_D12
4	IDE_D5	29	IDE_D13
5	IDE_D6	30	IDE_D14
6	IDE_D7	31	IDE_D15
7	IDE_CS1#	32	IDE_CS2#
8	A10	33	VS1
9	OE	34	IDE_IOR#
10	A9	35	IDE_IOW#
11	A8	36	CF_WE#
12	A7	37	IDE_INTRQ
13	+3.3V	38	+3.3V
14	A6	39	CSEL
15	A5	40	N.C.
16	A4	41	HDRST#
17	A3	42	IDE_RDY
18	IDE_A2	43	IDE_DRQ
19	IDE_A1	44	IDE_ACK
20	IDE_A0	45	DASP_CF
21	IDE_D0	46	CBLID_P#
22	IDE_D1	47	IDE_D8
23	IDE_D2	48	IDE_D9
24	N.C.	49	IDE_D10
25	CD2	50	GND

_	

4.2.4 PCI BUS

The conga-CEVAL has four bus master capable PCI bus slots (connectors X30-X33). The COM Express[™] PCI interface is compliant to the 'PCI Local Bus Specification Revision 2.3'. This interface is specified to be +5V tolerant with +3.3V signaling. All necessary PCI bus pull-up resistors are included on the COM Express[™] module. A detailed pin description of the PCI connector can be found in the congatec COM Express[™] Design Guide.

5 Additional Features

5.1 Reset

The COM Express[™] module and all connected components will perform a hard reset when this button is pressed. The Reset button is connected to the COM Express[™] module's SYS_RESET# signal.

5.2 PC Speaker (Beeper)

The board-mounted speaker provides audible error code (beep code) information during POST. The speaker M11 is connected to the COM Express[™] module's SPEAKER signal.

The DIP Switch M50 enables or disables the PC beeper as shown below:

DIP Switch M50	Configuration
SW1 On	PC beeper enabled (default)
SW1 Off	PC beeper disabled
SW2 On	Carrier HDA codec disabled
SW2 Off	Carrier HDA codec enabled (default)

(M50) [ON

DIP SWITCH

5.3 Debug Display

During the POST (Power On Self Test), the BIOS generates diagnostic progress codes (POST-codes) to different I/O ports (usually port 80h). If the POST fails, execution stops and the last POST code generated is left at the respective port. This code is useful for determining the point where an error occurred.

The conga-CEVAL decodes these ports and displays their contents on 4 seven-segment displays (D48 to D51). The dots in the first two displays show the state of the Reset and the PCI Frame signals. A list of the POST codes and associated POST test and initialization routines for the BIOS used on congatec COM Express[™] modules is available at www.congatec.com.

The DIP Switch M45 is used for port selection.

DIP Switch M45	Configuration
SW1 On	PCI POST (default)
SW1 Off	LPC POST
SW2 On	POST ADDR 80h/84h (default)
SW2 Off	POST ADDR 90h/94h

5.4 **TPM Physical Presence Pin**

The conga-CEVAL rev C.X provides an assembly option (R199) to enable the TPM physical presence feature of the COM Express module. The R199 when populated, pulls the COM Express module pin C83 high, thereby enabling the TPM physical presence feature.

5.5 Ground Test Points

The conga-CEVAL provides 4 test points that are connected to Ground Potential (M3, M6, M15, and M16). These test points make it easier to connect oscilloscope probes and/or multimeter lines to Ground when performing measurements on the COM Express[™] module.

5.6 **Fan Connector and Power Configuration**

Jumper X6	3 Configuration	Fan	Fan Power Config.		
1 - 2	12 Volt fan (default)	(X14)	(X63)		
2 - 3	5 Volt fan				
Connector	Туре	3 2 1	3 2 1		

X14: 3 pin 2.54mm grid fan connector,

X63: 3 pin 2.54mm grid jumper.

Note

congatec COM Express[™] modules provide signals for fan control. This has been implemented through the use of some reserved pins. COM Express[™] module pin C77 provides the FAN_TACHOIN signal that is attached to pin 3 of the fan connector X14 found on the conga-CEVAL. This signal must receive two pulses per revolution in order to produce an accurate reading and therefore a two pulse per revolution fan is recommended.

5.7 **SMART Battery Management Module**

Connector X1 is used to connect the conga-CEVAL to a congatec SMART Battery Management Module evaluation kit. The following table describes the pinout of the X1 connector.

Pin	Signal	Pin	Signal
1	I2CLK	2	I2DAT
3	PWRBTN#_EXT	4	BATLOW#
5	PS_ON#	6	*SUS_S45#
7	VCC	8	5V_SB
9	SUS_STAT#	10	GND

	SBM² (X1)				
2	4 🔳	6 🔳	8 🔳	10	
1 🔳	3 🔳	5 🔳	7 🔳	9 🔳	

Note

The asterisk (*) indicates that the signal SUS_S45# is a logical ANDing of SUS_S4# and SUS_S5# signals.

X1: 10 pin, 2 row 2.54 mm grid box header.

5.8 **Feature Connector**

Pin	Signal	Description	Pin	Signal	Description
1	+5V (750 mA fuse)		2	5V_SB (750 mA fuse)	
3	+5V (via 330R for LED)		4	Hard Disk Activity	Shows activity on hard disk interface IDE1
5	I2DAT	General purpose I ² C port data I/O line.	6	SMBCLK_SB	System Management Bus bidirectional clock line.
7	I2CLK	General purpose I ² C port clock output.	8	SMBDATA_SB	System Management Bus bidirectional data line.
9	TX_CGBC		10	GPO0	
11	RX_CGBC		12	GPO1	
13	PS_ON#	Power Supply On (active low).	14	GPO2	
15	SUS_S3#	Indicates system is in Suspend to RAM state. Active low output.	16	GPO3	
17	GND	Power Ground	18	GND	Power Ground
19	THRMTRIP#	Active low output indicating that the CPU has entered thermal shutdown.	20	SMBALRT#	System Management Bus Alert – active low input can be used to generate an SMI# (System Management Interrupt) or to wake the system.
21	GPI1		22	SUS_S4#	Indicates systems is in Suspend to Disk state. Active low output.
23	SUS_STAT#	Indicates imminent suspend operation; used to notify LPC devices.	24	GPI0	
25	GPI2		26	SUS_S5#	Indicates systems is in Soft Off state.
27	WDTRIG		28	THRM#	Input from off-module temp sensor indicating an over- temp situation.
29	GPI3		30	PCI_M66EN	Module input signal indicates whether an off-module PCI device is capable of 66MHz operation.
31	BATLOW#	Indicates that external battery is low.	32	WAKE1#	General purpose wake up signal. May be used to implement wake-up on PS2 keyboard or mouse activity.
33	PEG_ENABLE#	Strap to enable PCI Express x16 external graphics interface.	34	PEG_LANE_RV#	PCI Express Graphics lane reversal input strap.
35	KBINH#		36	SYS_RESET#	Reset Button Input. Active low input. System is held in hardware reset while this input is low and comes out of reset upon release.
37	GND	Power Ground	38	GND	Power Ground
39	PWBTN#	Power Button to bring system out of S5 (soft off), active on rising edge.	40	PWR_OK	Power OK from main power supply. A high value indicates that the power is good. For additional information refer to PWRGOOD Config connector X11.

Connector Type

40 pin, 2 row 2.54mm grid header.

6 Mechanical Drawing conga-CEVAL

7 Industry Specifications

The list below provides links to industry specifications that should be used as reference material when designing a COM Express[™] carrier board.

Specification	Link
PICMG [®] COM Express Module [™] Base Specification	http://www.picmg.org/
PCI Express Base Specification, Revision 2.0	http://www.pcisig.com/specifications
PCI Local Bus Specification, Revision 2.3	http://www.pcisig.com/specifications
Universal Serial Bus (USB) Specification, Revision 2.0	http://www.usb.org/home
ExpressCard Standard Release 1.0	http://www.expresscard.org/
Serial ATA Specification, Revision 1.0a	http://www.serialata.org
Low Pin Count Interface Specification, Revision 1.0 (LPC)	http://developer.intel.com/design/chipsets/industry/lpc.htm
Audio Codec '97 Component Specification, Version 2.3	http://www.intel.com/design/chipsets/audio/
High Definition Audio Specification, Rev. 1.0	http://www.intel.com/standards/hdaudio/
LVDS Owner's Manual	http://www.national.com
Extended Display Identification Data Standard Version 1.3 (EDID™)	http://www.vesa.org
Enhanced Display Data Channel Specification Version 1.1 (DDC)	http://www.vesa.org
IEEE standard 802.3ab 1000BASE T Ethernet	http://www.ieee.org/portal/site
Advanced Configuration and Power Interface Specification Rev. 3.0a	http://www.acpi.info/

The following reference material from Mindshare Books is recommended by congatec AG. For more information and additional books visit www.mindshare.com.

Title	Author
PCI Express System Architecture	Ravi Budruk, Don Anderson, Tom Shanley
PCI System Architecture (4th Edition)	Tom Shanley, Don Anderson
Universal Serial Bus System Architecture	Don Anderson
SATA Storage Technology	Don Anderson
Protected Mode Software Architecture	Tom Shanley
(The PC System Architecture Series)	
The Unabridged Pentium 4	Tom Shanley

Additional books covering various PC architecture subjects that should be used as reference material can be found at www.intel.com/intelpress.